This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2013 Bogdan Stan, 2

Let $ \left( a_n \right) ,\left( b_n \right) $ be two sequences of real numbers from the interval $ (-1,1) $ having the property that $$ \max\left( \left| a_{n+1} -a_n \right| ,\left| b_{n+1} -b_n \right| \right) \le\frac{1}{(n+4)(n+5)} , $$ for any natural number. Prove that $ \left| a_nb_n -a_1b_1 \right|\le 1/2, $ for any natural number $ n. $ [i]Cristinel Mortici[/i]