This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2024 USA IMO Team Selection Test, 3

Let $n>k \geq 1$ be integers and let $p$ be a prime dividing $\tbinom{n}{k}$. Prove that the $k$-element subsets of $\{1,\ldots,n\}$ can be split into $p$ classes of equal size, such that any two subsets with the same sum of elements belong to the same class. [i]Ankan Bhattacharya[/i]