This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2011 Middle European Mathematical Olympiad, 7

Let $A$ and $B$ be disjoint nonempty sets with $A \cup B = \{1, 2,3, \ldots, 10\}$. Show that there exist elements $a \in A$ and $b \in B$ such that the number $a^3 + ab^2 + b^3$ is divisible by $11$.