This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2022 3rd Memorial "Aleksandar Blazhevski-Cane", P1

A $6 \times 6$ board is given such that each unit square is either red or green. It is known that there are no $4$ adjacent unit squares of the same color in a horizontal, vertical, or diagonal line. A $2 \times 2$ subsquare of the board is [i]chesslike[/i] if it has one red and one green diagonal. Find the maximal possible number of chesslike squares on the board. [i]Proposed by Nikola Velov[/i]