This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4

2014 IFYM, Sozopol, 3

The graph $G$ with 2014 vertices doesn’t contain any 3-cliques. If the set of the degrees of the vertices of $G$ is $\{1,2,...,k\}$, find the greatest possible value of $k$.

2019 Polish MO Finals, 3

$n\ge 3$ guests met at a party. Some of them know each other but there is no quartet of different guests $a, b, c, d$ such that in pairs $\lbrace a, b \rbrace, \lbrace b, c \rbrace, \lbrace c, d \rbrace, \lbrace d, a \rbrace$ guests know each other but in pairs $\lbrace a, c \rbrace, \lbrace b, d \rbrace$ guests don't know each other. We say a nonempty set of guests $X$ is an [i]ingroup[/i], when guests from $X$ know each other pairwise and there are no guests not from $X$ knowing all guests from $X$. Prove that there are at most $\frac{n(n-1)}{2}$ different ingroups at that party.

2021 Centroamerican and Caribbean Math Olympiad, 4

There are $2021$ people at a meeting. It is known that one person at the meeting doesn't have any friends there and another person has only one friend there. In addition, it is true that, given any $4$ people, at least $2$ of them are friends. Show that there are $2018$ people at the meeting that are all friends with each other. [i]Note. [/i]If $A$ is friend of $B$ then $B$ is a friend of $A$.

2019 IFYM, Sozopol, 7

Let $n$ be a natural number. The graph $G$ has $10n$ vertices. They are separated into $10$ groups with $n$ vertices and we know that there is an edge between two of them if and only if they belong to two different groups. What’s the greatest number of edges a subgraph of $G$ can have, so that there are no 4-cliques in it?