This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

1970 Putnam, B3

A closed subset $S$ of $\mathbb{R}^{2}$ lies in $a<x<b$. Show that its projection on the $y$-axis is closed.

1963 Putnam, B6

Let $E$ be a Euclidean space of at most three dimensions. If $A$ is a nonempty subset of $E$, define $S(A)$ to be the set of points that lie on closed segments joining pairs of points of $A$ (a one-point set should be considered to be a special case of a closed segment). For a given nonempty set $A_0$, define $A_n =S(A_{n-1})$ for $n=1,2,\ldots$ Prove that $A_2 =A_3 =\ldots.$