This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3

2010 Contests, 3

Laura has $2010$ lamps connected with $2010$ buttons in front of her. For each button, she wants to know the corresponding lamp. In order to do this, she observes which lamps are lit when Richard presses a selection of buttons. (Not pressing anything is also a possible selection.) Richard always presses the buttons simultaneously, so the lamps are lit simultaneously, too. a) If Richard chooses the buttons to be pressed, what is the maximum number of different combinations of buttons he can press until Laura can assign the buttons to the lamps correctly? b) Supposing that Laura will choose the combinations of buttons to be pressed, what is the minimum number of attempts she has to do until she is able to associate the buttons with the lamps in a correct way?

2010 Nordic, 3

Laura has $2010$ lamps connected with $2010$ buttons in front of her. For each button, she wants to know the corresponding lamp. In order to do this, she observes which lamps are lit when Richard presses a selection of buttons. (Not pressing anything is also a possible selection.) Richard always presses the buttons simultaneously, so the lamps are lit simultaneously, too. a) If Richard chooses the buttons to be pressed, what is the maximum number of different combinations of buttons he can press until Laura can assign the buttons to the lamps correctly? b) Supposing that Laura will choose the combinations of buttons to be pressed, what is the minimum number of attempts she has to do until she is able to associate the buttons with the lamps in a correct way?

2020 Latvia Baltic Way TST, 8

A magician has $300$ cards with numbers from $1$ to $300$ written on them, each number on exactly one card. The magician then lays these cards on a $3 \times 100$ rectangle in the following way - one card in each unit square so that the number cannot be seen and cards with consecutive numbers are in neighbouring squares. Afterwards, the magician turns over $k$ cards of his choice. What is the smallest value of $k$ for which it can happen that the opened cards definitely determine the exact positions of all other cards?