This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2017 CIIM, Problem 2

Let $f :\mathbb{R} \to \mathbb{R}$ a derivable function such that $f(0) = 0$ and $|f'(x)| \leq |f(x)\cdot log |f(x)||$ for every $x \in \mathbb{R}$ such that $0 < |f(x)| < 1/2.$ Prove that $f(x) = 0$ for every $x \in \mathbb{R}$.