This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 29

2023 UMD Math Competition Part II, 3

Let $p$ be a prime, and $n > p$ be an integer. Prove that \[ \binom{n+p-1}{p} - \binom{n}{p} \] is divisible by $n$.

2011 Korea Junior Math Olympiad, 8

There are $n$ students each having $r$ positive integers. Their $nr$ positive integers are all different. Prove that we can divide the students into $k$ classes satisfying the following conditions: (a) $k \le 4r$ (b) If a student $A$ has the number $m$, then the student $B$ in the same class can't have a number $\ell$ such that $(m - 1)! < \ell < (m + 1)! + 1$

2007 Thailand Mathematical Olympiad, 14

The sum $$\sum_{k=84}^{8000}{k \choose 84}{{8084 - k} \choose 84}$$ can be written as a binomial coefficient $a \choose b$ for integers $a, b$. Find a possible pair $(a, b)$

2009 QEDMO 6th, 4

Tags: algebra , sum , combination
Let $a$ and $b$ be two real numbers and let $n$ be a nonnegative integer. Then prove that $$\sum_{k=0}^{n} {n \choose k} (a + k)^k (b - k)^{n-k} = \sum_{k=0}^{n} \frac{n!}{t!} (a + b)^t $$