Found problems: 14842
2014 South East Mathematical Olympiad, 2
Let $n\geq 4$ be a positive integer.Out of $n$ people,each of two individuals play table tennis game(every game has a winner).Find the minimum value of $n$,such that for any possible outcome of the game,there always exist an ordered four people group $(a_{1},a_{2},a_{3},a_{4})$,such that the person $a_{i}$ wins against $a_{j}$ for any $1\leq i<j\leq 4$
2017 Morocco TST-, 2
The leader of an IMO team chooses positive integers $n$ and $k$ with $n > k$, and announces them to the deputy leader and a contestant. The leader then secretly tells the deputy leader an $n$-digit binary string, and the deputy leader writes down all $n$-digit binary strings which differ from the leader’s in exactly $k$ positions. (For example, if $n = 3$ and $k = 1$, and if the leader chooses $101$, the deputy leader would write down $001, 111$ and $100$.) The contestant is allowed to look at the strings written by the deputy leader and guess the leader’s string. What is the minimum number of guesses (in terms of $n$ and $k$) needed to guarantee the correct answer?
2020 DMO Stage 1, 4.
[b]Q.[/b] We paint the numbers $1,2,3,4,5$ with red or blue. Prove that the equation $x+y=z$ have a monocolor solution (that is, all the 3 unknown there are the same color . It not needed that $x, y, z$ must be different!)
[i]Proposed by TuZo[/i]
1998 May Olympiad, 1
With six rods a piece like the one in the figure is constructed. The three outer rods are equal to each other. The three inner rods are equal to each other. You want to paint each rod a single color so that at each joining point, the three arriving rods have a different color. The rods can only be painted blue, white, red or green. In how many ways can the piece be painted?
[img]https://cdn.artofproblemsolving.com/attachments/1/1/91e6b388498613486477ab6b51735055e920cc.gif[/img]
2007 Turkey MO (2nd round), 3
In a country between each pair of cities there is at most one direct road. There is a connection (using one or more roads) between any two cities even after the elimination of any given city and all roads incident to this city. We say that the city $A$ can be[i] k -directionally[/i] connected to the city $B$, if : we can orient at most $k$ roads such that after[i] arbitrary[/i] orientation of remaining roads for any fixed road $l$ (directly connecting two cities) there is a path passing through roads in the direction of their orientation starting at $A$, passing through $l$ and ending at $B$ and visiting each city at most once. Suppose that in a country with $n$ cities, any two cities can be[i] k - directionally[/i] connected. What is the minimal value of $k$?
2007 Estonia National Olympiad, 5
In a grid of dimensions $n \times n$, a part of the squares is marked with crosses such that in each at least half of the $4 \times 4$ squares are marked. Find the least possible the total number of marked squares in the grid.
2007 Turkey Junior National Olympiad, 2
In a qualification group with $15$ volleyball teams, each team plays with all the other teams exactly once. Since there is no tie in volleyball, there is a winner in every match. After all matches played, a team would be qualified if its total number of losses is not exceeding $N$. If there are at least $7$ teams qualified, find the possible least value of $N$.
2021 China Team Selection Test, 1
Given positive integer $ n \ge 5 $ and a convex polygon $P$, namely $ A_1A_2...A_n $. No diagonals of $P$ are concurrent. Proof that it is possible to choose a point inside every quadrilateral $ A_iA_jA_kA_l (1\le i<j<k<l\le n) $ not on diagonals of $P$, such that the $ \tbinom{n}{4} $ points chosen are distinct, and any segment connecting these points intersect with some diagonal of P.
Kvant 2021, M2667
Does there exist a set $S$ of $100$ points in a plane such that the center of mass of any $10$ points in $S$ is also a point in $S$?
2025 Kyiv City MO Round 2, Problem 3
Does there exist a sequence of positive integers \( a_1, a_2, \ldots, a_{100} \) such that every number from \( 1 \) to \( 100 \) appears exactly once, and for each \( 1 \leq i \leq 100 \), the condition
\[
a_{a_i + i} = i
\]
holds? Here it is assumed that \( a_{k+100} = a_k \) for each \( 1 \leq k \leq 100 \).
[i]Proposed by Mykhailo Shtandenko[/i]
2014 Serbia JBMO TST, 4
There $100$ people seated at a round table $50$ women and $50$ men. Show that there are two people of opposite gender that stay between two people of opposite gender. (WWMM, MMWW, WMWM, MWMW)
2023 USA IMOTST, 2
Let $m$ and $n$ be fixed positive integers. Tsvety and Freyja play a game on an infinite grid of unit square cells. Tsvety has secretly written a real number inside of each cell so that the sum of the numbers within every rectangle of size either $m$ by $n$ or $n$ by $m$ is zero. Freyja wants to learn all of these numbers.
One by one, Freyja asks Tsvety about some cell in the grid, and Tsvety truthfully reveals what number is written in it. Freyja wins if, at any point, Freyja can simultaneously deduce the number written in every cell of the entire infinite grid (If this never occurs, Freyja has lost the game and Tsvety wins).
In terms of $m$ and $n$, find the smallest number of questions that Freyja must ask to win, or show that no finite number of questions suffice.
[i]Nikolai Beluhov[/i]
2017 Estonia Team Selection Test, 12
Let $n \geq 3$ be a positive integer. Find the maximum number of diagonals in a regular $n$-gon one can select, so that any two of them do not intersect in the interior or they are perpendicular to each other.
2023 Romanian Master of Mathematics, 6
Let $r,g,b$ be non negative integers and $\Gamma$ be a connected graph with $r+g+b+1$ vertices. Its edges are colored in red green and blue. It turned out that $\Gamma $ contains
A spanning tree with exactly $r$ red edges.
A spanning tree with exactly $g$ green edges.
A spanning tree with exactly $b$ blue edges.
Prove that $\Gamma$ contains a spanning tree with exactly $r$ red edges, $g$ green edges and $b$ blue edges.
2019 BMT Spring, 6
At a party, $2019$ people decide to form teams of three. To do so, each turn, every person not on a team points to one other person at random. If three people point to each other (that is, $A$ points to $B$, $B$ points to $C$, and $C$ points to $A$), then they form a team. What is the probability that after $65, 536$ turns, exactly one person is not on a team
2018 China Team Selection Test, 2
An integer partition, is a way of writing n as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition.
[quote]For example, 4 can be partitioned in five distinct ways:
4
3 + 1
2 + 2
2 + 1 + 1
1 + 1 + 1 + 1[/quote]
The number of partitions of n is given by the partition function $p\left ( n \right )$. So $p\left ( 4 \right ) = 5$ .
Determine all the positive integers so that $p\left ( n \right )+p\left ( n+4 \right )=p\left ( n+2 \right )+p\left ( n+3 \right )$.
2007 JBMO Shortlist, 2
Given are $50$ points in the plane, no three of them belonging to a same line. Each of these points is colored using one of four given colors. Prove that there is a color and at least $130$ scalene triangles with vertices of that color.
1991 IMO Shortlist, 11
Prove that $ \sum_{k \equal{} 0}^{995} \frac {( \minus{} 1)^k}{1991 \minus{} k} {1991 \minus{} k \choose k} \equal{} \frac {1}{1991}$
2021 Stanford Mathematics Tournament, R4
[b]p13.[/b] Emma has the five letters: $A, B, C, D, E$. How many ways can she rearrange the letters into words? Note that the order of words matter, ie $ABC DE$ and $DE ABC$ are different.
[b]p14.[/b] Seven students are doing a holiday gift exchange. Each student writes their name on a slip of paper and places it into a hat. Then, each student draws a name from the hat to determine who they will buy a gift for. What is the probability that no student draws himself/herself?
[b]p15.[/b] We model a fidget spinner as shown below (include diagram) with a series of arcs on circles of radii $1$. What is the area swept out by the fidget spinner as it’s turned $60^o$ ?
[img]https://cdn.artofproblemsolving.com/attachments/9/8/db27ffce2af68d27eee5903c9f09a36c2a6edf.png[/img]
[b]p16.[/b] Let $a,b,c$ be the sides of a triangle such that $gcd(a, b) = 3528$, $gcd(b, c) = 1008$, $gcd(a, c) = 504$. Find the value of $a * b * c$. Write your answer as a prime factorization.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1991 Tournament Of Towns, (297) 4
Five points are chosen on the sphere, no three of them lying on a great circle (a great circle is the intersection of the sphere with some plane passing through the sphere’s centre). Two great circles not containing any of the chosen points are called equivalent if one of them can be moved to the other without passing through any chosen points.
(a) How many nonequivalent great circles not containing any chosen points can be drawn on the sphere?
(b) Answer the same problem, but with $n$ chosen points.
2017 HMNT, 10
Five equally skilled tennis players named Allen, Bob, Catheryn, David, and Evan play in a round robin tournament, such that each pair of people play exactly once, and there are no ties. In each of the ten games, the two players both have a 50% chance of winning, and the results of the games are independent. Compute the probability that there exist four distinct players $P_1$, $P_2$, $P_3$, $P_4$ such that $P_i$ beats $P_{i+1}$ for $i=1, 2, 3, 4$. (We denote $P_5=P_1$).
2017 Moscow Mathematical Olympiad, 11
There is one nonzero digit in every cell of $2017\times 2017 $ table.
On the board we writes $4034$ numbers that are rows and columns of table. It is known, that $4033$ numbers are divisible by prime $p$ and last is not divisible by $p$. Find all possible values of $p$.
[hide=Example]Example for $2\times2$. If table is
|1|4|
|3|7|.
Then numbers on board are $14,37,13,47$[/hide]
2019 IMO, 5
The Bank of Bath issues coins with an $H$ on one side and a $T$ on the other. Harry has $n$ of these coins arranged in a line from left to right. He repeatedly performs the following operation: if there are exactly $k>0$ coins showing $H$, then he turns over the $k$th coin from the left; otherwise, all coins show $T$ and he stops. For example, if $n=3$ the process starting with the configuration $THT$ would be $THT \to HHT \to HTT \to TTT$, which stops after three operations.
(a) Show that, for each initial configuration, Harry stops after a finite number of operations.
(b) For each initial configuration $C$, let $L(C)$ be the number of operations before Harry stops. For example, $L(THT) = 3$ and $L(TTT) = 0$. Determine the average value of $L(C)$ over all $2^n$ possible initial configurations $C$.
[i]Proposed by David Altizio, USA[/i]
2004 Estonia National Olympiad, 3
From $25$ points in a plane, both of whose coordinates are integers of the set $\{-2,-1, 0, 1, 2\}$, some $17$ points are marked. Prove that there are three points on one line, one of them is the midpoint of two others.
2023 May Olympiad, 1
At Easter Day, $4$ children and their mothers participated in a game in which they had to find hidden chocolate eggs. Augustine found $4$ eggs, Bruno found $6$, Carlos found $9$ and Daniel found $12$. Mrs. Gómez found the same number of eggs as her son, Mrs. Junco found twice as many eggs as her son, Mrs. Messi found three times as many eggs as her son, and Mrs. Núñez found five times as many eggs as her son. At the end of the day, they put all the eggs in boxes, with $18$ eggs in each box, and only one egg was left over. Determine who the mother of each child is.