This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2004 Iran MO (3rd Round), 23

$ \mathcal F$ is a family of 3-subsets of set $ X$. Every two distinct elements of $ X$ are exactly in $ k$ elements of $ \mathcal F$. It is known that there is a partition of $ \mathcal F$ to sets $ X_1,X_2$ such that each element of $ \mathcal F$ has non-empty intersection with both $ X_1,X_2$. Prove that $ |X|\leq4$.

1993 Bundeswettbewerb Mathematik, 1

Every positive integer $n>2$ can be written as a sum of distinct positive integers. Let $A(n)$ be the maximal number of summands in such a representation. Find a formula for $A(n).$

2009 Vietnam Team Selection Test, 3

There are $ 6n \plus{} 4$ mathematicians participating in a conference which includes $ 2n \plus{} 1$ meetings. Each meeting has one round table that suits for $ 4$ people and $ n$ round tables that each table suits for $ 6$ people. We have known that two arbitrary people sit next to or have opposite places doesn't exceed one time. 1. Determine whether or not there is the case $ n \equal{} 1$. 2. Determine whether or not there is the case $ n > 1$.

1992 All Soviet Union Mathematical Olympiad, 565

An $m \times n$ rectangle is divided into mn unit squares by lines parallel to its sides. A gnomon is the figure of three unit squares formed by deleting one unit square from a $2 \times 2$ square. For what $m, n$ can we divide the rectangle into gnomons so that no two gnomons form a rectangle and no vertex is in four gnomons?

1975 Bundeswettbewerb Mathematik, 1

In a planar coordinate system, the points have non-negative integer coordinates numbered according to the figure. E.g. the point $(3,1)$ has the number $12$. [img]https://cdn.artofproblemsolving.com/attachments/a/a/28725d75f281ac4618129067037d751c8d8f83.png[/img] What is the number of the point$(x,y)$?

2006 Germany Team Selection Test, 3

Suppose we have a $n$-gon. Some $n-3$ diagonals are coloured black and some other $n-3$ diagonals are coloured red (a side is not a diagonal), so that no two diagonals of the same colour can intersect strictly inside the polygon, although they can share a vertex. Find the maximum number of intersection points between diagonals coloured differently strictly inside the polygon, in terms of $n$. [i]Proposed by Alexander Ivanov, Bulgaria[/i]

1991 China Team Selection Test, 2

For $i = 1,2, \ldots, 1991$, we choose $n_i$ points and write number $i$ on them (each point has only written one number on it). A set of chords are drawn such that: (i) They are pairwise non-intersecting. (ii) The endpoints of each chord have distinct numbers. If for all possible assignments of numbers the operation can always be done, find the necessary and sufficient condition the numbers $n_1, n_2, \ldots, n_{1991}$ must satisfy for this to be possible.

2008 Hungary-Israel Binational, 2

For every natural number $ t$, $ f(t)$ is the probability that if a fair coin is tossed $ t$ times, the number of times we get heads is 2008 more than the number of tails. What is the value of $ t$ for which $ f(t)$ attains its maximum? (if there is more than one, describe all of them)

2018 China Team Selection Test, 3

Two positive integers $p,q \in \mathbf{Z}^{+}$ are given. There is a blackboard with $n$ positive integers written on it. A operation is to choose two same number $a,a$ written on the blackboard, and replace them with $a+p,a+q$. Determine the smallest $n$ so that such operation can go on infinitely.

2001 China Team Selection Test, 2

A badminton club consists of $2n$ members who are n couples. The club plans to arrange a round of mixed doubles matches where spouses neither play together nor against each other. Requirements are: $\cdot$ Each pair of members of the same gender meets exactly once as opponents in a mixed doubles match. $\cdot$ Any two members of the opposite gender who are not spouses meet exactly once as partners and also as opponents in a mixed doubles match. Given that $(n,6)=1$, can you arrange a round of mixed doubles matches that meets the above specifications and requirements?

2013 Tournament of Towns, 4

Eight rooks are placed on a $8\times 8$ chessboard, so that no two rooks attack one another. All squares of the board are divided between the rooks as follows. A square where a rook is placed belongs to it. If a square is attacked by two rooks then it belongs to the nearest rook; in case these two rooks are equidistant from this square each of them possesses a half of the square. Prove that every rook possesses the equal area.

2022 Federal Competition For Advanced Students, P2, 3

Lisa writes a positive whole number in the decimal system on the blackboard and now makes in each turn the following: The last digit is deleted from the number on the board and then the remaining shorter number (or 0 if the number was one digit) becomes four times the number deleted number added. The number on the board is now replaced by the result of this calculation. Lisa repeats this until she gets a number for the first time was on the board. (a) Show that the sequence of moves always ends. (b) If Lisa begins with the number $53^{2022} - 1$, what is the last number on the board? Example: If Lisa starts with the number $2022$, she gets $202 + 4\cdot 2 = 210$ in the first move and overall the result $$2022 \to 210 \to 21 \to 6 \to 24 \to 18 \to 33 \to 15 \to 21$$. Since Lisa gets $21$ for the second time, the turn order ends. [i](Stephan Pfannerer)[/i]

1999 Hong kong National Olympiad, 3

Students have taken a test paper in each of $n \ge 3$ subjects. It is known that in any subject exactly three students got the best score, and for any two subjects exactly one student got the best scores in both subjects. Find the smallest $n$ for which the above conditions imply that exactly one student got the best score in each of the $n$ subjects.

2017 Pan-African Shortlist, C?

The numbers from $1$ to $2017$ are written on a board. Deka and Farid play the following game : each of them, on his turn, erases one of the numbers. Anyone who erases a multiple of $2, 3$ or $5$ loses and the game is over. Is there a winning strategy for Deka ?

Math Hour Olympiad, Grades 8-10, 2014.3

There are $2014$ airports in the faraway land of Artinia. Each pair of airports is connected by a nonstop flight in one or both directions. Show that there is some airport from which it is possible to reach every other airport in at most two flights.

2018 Azerbaijan JBMO TST, 4

An $n\times n$ square table is divided into $n^2$ unit cells. Some unit segments of the obtained grid (i.e. the side of any unit cell) is colored black so that any unit cell of the given square has exactly one black side. Find [b]a)[/b] the smallest [b]b)[/b] the greatest possible number of black unit segments.

1976 Miklós Schweitzer, 2

Let $ G$ be an infinite graph such that for any countably infinite vertex set $ A$ there is a vertex $ p$, not in $A$, joined to infinitely many elements of $ A$. Show that $ G$ has a countably infinite vertex set $ A$ such that $ G$ contains uncountably infinitely many vertices $ p$ joined to infinitely many elements of $ A$. [i]P. Erdos, A. Hajnal[/i]

2009 Indonesia TST, 4

Sixteen people for groups of four people such that each two groups have at most two members in common. Prove that there exists a set of six people in which every group is not properly contained in it.

2023 Chile National Olympiad, 2

In Cartesian space, let $\Omega = \{(a, b, c) : a, b, c$ are integers between $1$ and $30\}$. A point of $\Omega$ is said to be [i]visible [/i] from the origin if the segment that joins said point with the origin does not contain any other elements of $\Omega$. Find the number of points of $\Omega$ that are [i]visible [/i] from the origin.

2022 Brazil National Olympiad, 6

Determine the largest positive integer $k$ for which the following statement is true: given $k$ distinct subsets of the set $\{1, 2, 3, \dots , 2023\}$, each with $1011$ elements, it is possible partition the subsets into two collections so that any two subsets in one same collection have some element in common.

1990 IMO Longlists, 2

Prove that $ \sum_{k \equal{} 0}^{995} \frac {( \minus{} 1)^k}{1991 \minus{} k} {1991 \minus{} k \choose k} \equal{} \frac {1}{1991}$

2011 Iran MO (3rd Round), 4

We say the point $i$ in the permutation $\sigma$ [b]ongoing[/b] if for every $j<i$ we have $\sigma (j)<\sigma (i)$. [b]a)[/b] prove that the number of permutations of the set $\{1,....,n\}$ with exactly $r$ ongoing points is $s(n,r)$. [b]b)[/b] prove that the number of $n$-letter words with letters $\{a_1,....,a_k\},a_1<.....<a_k$. with exactly $r$ ongoing points is $\sum_{m}\dbinom{k}{m} S(n,m) s(m,r)$.

1997 Finnish National High School Mathematics Competition, 4

Count the sum of the four-digit positive integers containing only odd digits in their decimal representation.

1952 Kurschak Competition, 2

Show that if we choose any $n + 2$ distinct numbers from the set $\{1, 2, 3, . . . , 3n\}$ there will be two whose difference is greater than $n$ and smaller than $2n$.

1993 Spain Mathematical Olympiad, 1

There is a reunion of $201$ people from $5$ different countries. It is known that in each group of $6$ people, at least two have the same age. Show that there must be at least $5$ people with the same country, age and sex.