This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 189

2008 HMNT, Chess

[u]Chessboards [/u] Joe B. is playing with some chess pieces on a $6\times 6$ chessboard. Help him find out some things. [b]p1.[/b] Joe B. first places the black king in one corner of the board. In how many of the $35$ remaining squares can he place a white bishop so that it does not check the black king? [b]p2.[/b] Joe B. then places a white king in the opposite corner of the board. How many total ways can he place one black bishop and one white bishop so that neither checks the king of the opposite color? [b]p3.[/b] Joe B. now clears the board. How many ways can he place $3$ white rooks and $3$ black rooks on the board so that no two rooks of opposite color can attack each other? [b]p4.[/b] Joe B. is frustrated with chess. He breaks the board, leaving a $4\times 4$ board, and throws $3$ black knights and $3$ white kings at the board. Miraculously, they all land in distinct squares! What is the expected number of checks in the resulting position? (Note that a knight can administer multiple checks and a king can be checked by multiple knights.) [b]p5.[/b] Suppose that at some point Joe B. has placed $2$ black knights on the original board, but gets bored of chess. He now decides to cover the $34$ remaining squares with $17$ dominos so that no two overlap and the dominos cover the entire rest of the board. For how many initial arrangements of the two pieces is this possible? Note: Chess is a game played with pieces of two colors, black and white, that players can move between squares on a rectangular grid. Some of the pieces move in the following ways: $\bullet$ Bishop: This piece can move any number of squares diagonally if there are no other pieces along its path. $\bullet$ Rook: This piece can move any number of squares either vertically or horizontally if there are no other pieces along its path. $\bullet$ Knight: This piece can move either two squares along a row and one square along a column or two squares along a column and one square along a row. $\bullet$ King: This piece can move to any open adjacent square (including diagonally). If a piece can move to a square occupied by a king of the opposite color, we say that it is checking the king. If a piece moves to a square occupied by another piece, this is called attacking.

1976 Dutch Mathematical Olympiad, 3

In how many ways can the king in the chessboard reach the eighth rank in $7$ moves from its original square on the first row?

1930 Eotvos Mathematical Competition, 2

A straight line is drawn across an $8\times 8$ chessboard. It is said to [i]pierce [/i]a square if it passes through an interior point of the square. At most how many of the $64$ squares can this line [i]pierce[/i]?

2001 Swedish Mathematical Competition, 6

A chessboard is covered with $32$ dominos. Each domino covers two adjacent squares. Show that the number of horizontal dominos with a white square on the left equals the number with a white square on the right.

2007 JBMO Shortlist, 3

The nonnegative integer $n$ and $ (2n + 1) \times (2n + 1)$ chessboard with squares colored alternatively black and white are given. For every natural number $m$ with $1 < m < 2n+1$, an $m \times m$ square of the given chessboard that has more than half of its area colored in black, is called a $B$-square. If the given chessboard is a $B$-square, fi nd in terms of $n$ the total number of $B$-squares of this chessboard.

1987 Tournament Of Towns, (149) 6

Two players play a game on an $8$ by $8$ chessboard according to the following rules. The first player places a knight on the board. Then each player in turn moves the knight , but cannot place it on a square where it has been before. The player who has no move loses. Who wins in an errorless game , the first player or the second one? (The knight moves are the normal ones. ) (V . Zudilin , year 12 student , Beltsy (Moldova))

2022 Olympic Revenge, Problem 3

positive real $C$ is $n-vengeful$ if it is possible to color the cells of an $n \times n$ chessboard such that: i) There is an equal number of cells of each color. ii) In each row or column, at least $Cn$ cells have the same color. a) Show that $\frac{3}{4}$ is $n-vengeful$ for infinitely many values of $n$. b) Show that it does not exist $n$ such that $\frac{4}{5}$ is $n-vengeful$.

2017 Saudi Arabia IMO TST, 3

The $64$ cells of an $8 \times 8$ chessboard have $64$ different colours. A Knight stays in one cell. In each move, the Knight jumps from one cell to another cell (the $2$ cells on the diagonal of an $2 \times 3$ board) also the colours of the $2$ cells interchange. In the end, the Knight goes to a cell having common side with the cell it stays at first. Can it happen that: there are exactly $3$ cells having the colours different from the original colours?

1992 India National Olympiad, 7

Let $n\geq 3$ be an integer. Find the number of ways in which one can place the numbers $1, 2, 3, \ldots, n^2$ in the $n^2$ squares of a $n \times n$ chesboard, one on each, such that the numbers in each row and in each column are in arithmetic progression.

2016 Postal Coaching, 4

Consider a $2n\times 2n$ chessboard with all the $4n^2$ cells being white to start with. The following operation is allowed to be performed any number of times: "Three consecutive cells (in a row or column) are recolored (a white cell is colored black and a black cell is colored white)." Find all possible values of $n\ge 2$ for which using the above operation one can obtain the normal chess coloring of the given board.

1986 Tournament Of Towns, (125) 7

Each square of a chessboard is painted either blue or red . Prove that the squares of one colour possess the property that the chess queen can perform a tour of all of them. The rules are that the queen may visit the squares of this colour not necessarily only once each , and may not be placed on squares of the other colour, although she may pass over them ; the queen moves along any horizontal , vertical or diagonal file over any distance. (A . K . Tolpugo , Kiev)

1992 IMO Longlists, 61

There are a board with $2n \cdot 2n \ (= 4n^2)$ squares and $4n^2-1$ cards numbered with different natural numbers. These cards are put one by one on each of the squares. One square is empty. We can move a card to an empty square from one of the adjacent squares (two squares are adjacent if they have a common edge). Is it possible to exchange two cards on two adjacent squares of a column (or a row) in a finite number of movements?

2014 Indonesia MO Shortlist, C3

Let $n$ be a natural number. Given a chessboard sized $m \times n$. The sides of the small squares of chessboard are not on the perimeter of the chessboard will be colored so that each small square has exactly two sides colored. Prove that a coloring like that is possible if and only if $m \cdot n$ is even.

1967 All Soviet Union Mathematical Olympiad, 091

"KING-THE SUICIDER" Given a chess-board $1000\times 1000$, $499$ white castles and a black king. Prove that it does not matter neither the initial situation nor the way white plays, but the king can always enter under the check in a finite number of moves.

1978 Bundeswettbewerb Mathematik, 1

A knight is modified so that it moves $p$ fields horizontally or vertically and $q$ fields in the perpendicular direction. It is placed on an infinite chessboard. If the knight returns to the initial field after $n$ moves, show that $n$ must be even.

2020 Novosibirsk Oral Olympiad in Geometry, 2

Vitya cut the chessboard along the borders of the cells into pieces of the same perimeter. It turned out that not all of the received parts are equal. What is the largest possible number of parts that Vitya could get?

2008 Postal Coaching, 4

An $8\times 8$ square board is divided into $64$ unit squares. A ’skew-diagonal’ of the board is a set of $8$ unit squares no two of which are in the same row or same column. Checkers are placed in some of the unit squares so that ’each skew-diagonal contains exactly two squares occupied by checkers’. Prove that there exist two rows or two columns which contain all the checkers.

2008 Bulgarian Autumn Math Competition, Problem 9.4

Stoyan and Nikolai have two $100\times 100$ chess boards. Both of them number each cell with the numbers $1$ to $10000$ in some way. Is it possible that for every two numbers $a$ and $b$, which share a common side in Nikolai's board, these two numbers are at a knight's move distance in Stoyan's board (that is, a knight can move from one of the cells to the other one with a move)? [i]Nikolai Beluhov[/i]

2003 Estonia National Olympiad, 5

Is it possible to cover an $n \times n$ chessboard which has its center square cut out with tiles shown in the picture (each tile covers exactly $4$ squares, tiles can be rotated and turned around) if a) $n = 5$, b) $n = 2003$? [img]https://cdn.artofproblemsolving.com/attachments/6/5/8fddeefc226ee0c02353a1fc11e48ce42d8436.png[/img]

1933 Eotvos Mathematical Competition, 2

Sixteen squares of an $8\times 8$ chessboard are chosen so that there are exactly lwo in each row and two in each column. Prove that eight white pawns and eight black pawns can be placed on these sixteen squares so that there is one white pawn and one black pawn in each row and in cach colunm.

2013 Tournament of Towns, 4

Eight rooks are placed on a $8\times 8$ chessboard, so that no two rooks attack one another. All squares of the board are divided between the rooks as follows. A square where a rook is placed belongs to it. If a square is attacked by two rooks then it belongs to the nearest rook; in case these two rooks are equidistant from this square each of them possesses a half of the square. Prove that every rook possesses the equal area.

2015 Indonesia MO Shortlist, C1

Given natural number n. Suppose that $N$ is the maximum number of elephants that can be placed on a chessboard measuring $2 \times n$ so that no two elephants are mutually under attack. Determine the number of ways to put $N$ elephants on a chessboard sized $2 \times n$ so that no two elephants attack each other. Alternative Formulation: Determine the number of ways to put $2015$ elephants on a chessboard measuring $2 \times 2015$ so there are no two elephants attacking each othe PS. Elephant = Bishop

1984 IMO Shortlist, 7

(a) Decide whether the fields of the $8 \times 8$ chessboard can be numbered by the numbers $1, 2, \dots , 64$ in such a way that the sum of the four numbers in each of its parts of one of the forms [list][img]http://www.artofproblemsolving.com/Forum/download/file.php?id=28446[/img][/list] is divisible by four. (b) Solve the analogous problem for [list][img]http://www.artofproblemsolving.com/Forum/download/file.php?id=28447[/img][/list]

2003 Estonia National Olympiad, 5

For which positive integers $n$ is it possible to cover a $(2n+1) \times (2n+1)$ chessboard which has one of its corner squares cut out with tiles shown in the figure (each tile covers exactly $4$ squares, tiles can be rotated and turned around)? [img]https://cdn.artofproblemsolving.com/attachments/6/5/8fddeefc226ee0c02353a1fc11e48ce42d8436.png[/img]

2014 Gulf Math Olympiad, 4

The numbers from $1$ to $64$ must be written on the small squares of a chessboard, with a different number in each small square. Consider the $112$ numbers you can make by adding the numbers in two small squares which have a common edge. Is it possible to write the numbers in the squares so that these $112$ sums are all different?