This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2024 Romanian Master of Mathematics, 6

A polynomial $P$ with integer coefficients is [i]square-free[/i] if it is not expressible in the form $P = Q^2R$, where $Q$ and $R$ are polynomials with integer coefficients and $Q$ is not constant. For a positive integer $n$, let $P_n$ be the set of polynomials of the form $$1 + a_1x + a_2x^2 + \cdots + a_nx^n$$ with $a_1,a_2,\ldots, a_n \in \{0,1\}$. Prove that there exists an integer $N$ such that for all integers $n \geq N$, more than $99\%$ of the polynomials in $P_n$ are square-free. [i]Navid Safaei, Iran[/i]