This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2010 N.N. Mihăileanu Individual, 3

Consider a countinuous function $ f:\mathbb{R}_{>0}\longrightarrow\mathbb{R}_{>0} $ that verifies the following conditions: $ \text{(1)} x f(f(x))=(f(x))^2,\quad\forall x\in\mathbb{R}_{>0} $ $ \text{(2)} \lim_{\stackrel{x\to 0}{x>0}} \frac{f(x)}{x}\in\mathbb{R}\cup\{ \pm\infty \} $ [b]a)[/b] Show that $ f $ is bijective. [b]b)[/b] Prove that the sequences $ \left( (\underbrace{f\circ f\circ\cdots \circ f}_{\text{n times}} ) (x) \right)_{n\ge 1} ,\left( (\underbrace{f^{-1}\circ f^{-1}\circ\cdots \circ f^{-1}}_{\text{n times}} ) (x) \right)_{n\ge 1} $ are both arithmetic progressions, for any fixed $ x\in\mathbb{R}_{>0} . $ [b]c)[/b] Determine the function $ f. $ [i]Nelu Chichirim[/i]

2019 Teodor Topan, 3

Let be two real numbers $ a<b, $ a natural number $ n\ge 2, $ and a continuous function $ f:[a,b]\longrightarrow (0,\infty ) $ whose image contains $ 1 $ and that admits a primitive $ F:[a,b]\longrightarrow [a,b] . $ Prove that there is a real number $ c\in (a,b) $ such that $$ (\underbrace{F\circ\cdots\circ F}_{\text{n times}} )(b) -(\underbrace{F\circ\cdots\circ F}_{\text{n times}} )(a) =(f(c))^{n+1} (b-a) $$ [i]Vlad Mihaly[/i]