This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2012 Miklós Schweitzer, 1

Is there any real number $\alpha$ for which there exist two functions $f,g: \mathbb{N} \to \mathbb{N}$ such that $$\alpha=\lim_{n \to \infty} \frac{f(n)}{g(n)},$$ but the function which associates to $n$ the $n$-th decimal digit of $\alpha$ is not recursive?