This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2019 Romania National Olympiad, 1

Let $a>0$ and $\mathcal{F} = \{f:[0,1] \to \mathbb{R} : f \text{ is concave and } f(0)=1 \}.$ Determine $$\min_{f \in \mathcal{F}} \bigg\{ \left( \int_0^1 f(x)dx\right)^2 - (a+1) \int_0^1 x^{2a}f(x)dx \bigg\}.$$