This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3

2010 Iran Team Selection Test, 9

Sequence of real numbers $a_0,a_1,\dots,a_{1389}$ are called concave if for each $0<i<1389$, $a_i\geq\frac{a_{i-1}+a_{i+1}}2$. Find the largest $c$ such that for every concave sequence of non-negative real numbers: \[\sum_{i=0}^{1389}ia_i^2\geq c\sum_{i=0}^{1389}a_i^2\]

2021 IMO Shortlist, A4

Show that the inequality \[\sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i-x_j|}\leqslant \sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i+x_j|}\]holds for all real numbers $x_1,\ldots x_n.$

2021 IMO, 2

Show that the inequality \[\sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i-x_j|}\leqslant \sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i+x_j|}\]holds for all real numbers $x_1,\ldots x_n.$