This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 478

2021 IOM, 2

Points $P$ and $Q$ are chosen on the side $BC$ of triangle $ABC$ so that $P$ lies between $B$ and $Q$. The rays $AP$ and $AQ$ divide the angle $BAC$ into three equal parts. It is known that the triangle $APQ$ is acute-angled. Denote by $B_1,P_1,Q_1,C_1$ the projections of points $B,P,Q,C$ onto the lines $AP,AQ,AP,AQ$, respectively. Prove that lines $B_1P_1$ and $C_1Q_1$ meet on line $BC$.

1980 Austrian-Polish Competition, 5

Let $A_1A_2A_3$ be a triangle and, for $1 \leq i \leq 3$, let $B_i$ be an interior point of edge opposite $A_i$. Prove that the perpendicular bisectors of $A_iB_i$ for $1 \leq i \leq 3$ are not concurrent.

2020 Greece Team Selection Test, 2

Given a triangle $ABC$ inscribed in circle $c(O,R)$ (with center $O$ and radius $R$) with $AB<AC<BC$ and let $BD$ be a diameter of the circle $c$. The perpendicular bisector of $BD$ intersects line $AC$ at point $M$ and line $AB$ at point $N$. Line $ND$ intersects the circle $c$ at point $T$. Let $S$ be the second intersection point of cicumcircles $c_1$ of triangle $OCM$, and $c_2$ of triangle $OAD$. Prove that lines $AD, CT$ and $OS$ pass through the same point.