This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 8

2014 AIME Problems, 6

Charles has two six-sided dice. One of the dice is fair, and the other die is biased so that it comes up six with probability $\tfrac23,$ and each of the other five sides has probability $\tfrac{1}{15}.$ Charles chooses one of the two dice at random and rolls it three times. Given that the first two rolls are both sixes, the probability that the third roll will also be a six is $\tfrac{p}{q},$ where $p$ and $q$ are relatively prime positive integers. Find $p+q$.

2021 Miklós Schweitzer, 10

Consider a coin with a head toss probability $p$ where $0 <p <1$ is fixed. Toss the coin several times, the tosses should be independent of each other. Denote by $A_i$ the event that of the $i$-th, $(i + 1)$-th, $\ldots$ , the $(i+m-1)$-th throws, exactly $T$ is the tail. For $T = 1$, calculate the conditional probability $\mathbb{P}(\bar{A_2} \bar{A_3} \cdots \bar{A_m} | A_1)$, and for $T = 2$, prove that $\mathbb{P}(\bar{A_2} \bar{A_3} \cdots \bar{A_m} | A_1)$ has approximation in the form $a+ \tfrac{b}{m} + \mathcal{O}(p^m)$ as $m \to \infty$.

2012 AMC 10, 18

Suppose that one of every $500$ people in a certain population has a particular disease, which displays no symptoms. A blood test is available for screening for this disease. For a person who has this disease, the test always turns out positive. For a person who does not have the disease, however, there is a $2\%$ false positive rate; in other words, for such people, $98\%$ of the time the test will turn out negative, but $2\%$ of the time the test will turn out positive and will incorrectly indicate that the person has the disease. Let $p$ be the probability that a person who is chosen at random from the population and gets a positive test result actually has the disease. Which of the following is closest to $p$? $ \textbf{(A)}\ \frac{1}{98}\qquad\textbf{(B)}\ \frac{1}{9}\qquad\textbf{(C)}\ \frac{1}{11}\qquad\textbf{(D)}\ \frac{49}{99}\qquad\textbf{(E)}\ \frac{98}{99}$

2021 JHMT HS, 10

A pharmaceutical company produces a disease test that has a $95\%$ accuracy rate on individuals who actually have an infection, and a $90\%$ accuracy rate on individuals who do not have an infection. They use their test on a population of mathletes, of which $2\%$ actually have an infection. If a test concludes that a mathlete has an infection, then the probability that the mathlete actually does have an infection is $\tfrac{a}{b},$ where $a$ and $b$ are relatively prime positive integers. Find $a + b.$

2002 Putnam, 1

Shanille O'Keal shoots free throws on a basketball court. She hits the first and misses the second, and thereafter the probability that she hits the next shot is equal to the proportion of shots she has hit so far. What is the probability she hits exactly $50$ of her first $100$ shots?

2001 Stanford Mathematics Tournament, 13

You have 2 six-sided dice. One is a normal fair die, while the other has 2 ones, 2 threes, and 2 fives. You pick a die and roll it. Because of some secret magnetic attraction of the unfair die, you have a 75% chance of picking the unfair die and a 25% chance of picking the fair die. If you roll a three, what is the probability that you chose the fair die?

2011 AMC 10, 21

Two counterfeit coins of equal weight are mixed with 8 identical genuine coins. The weight of each of the counterfeit coins is different from the weight of each of the genuine coins. A pair of coins is selected at random without replacement from the 10 coins. A second pair is selected at random without replacement from the remaining 8 coins. The combined weight of the first pair is equal to the combined weight of the second pair. What is the probability that all 4 selected coins are genuine? $ \textbf{(A)}\ \frac{7}{11}\qquad\textbf{(B)}\ \frac{9}{13}\qquad\textbf{(C)}\ \frac{11}{15}\qquad\textbf{(D)}\ \frac{15}{19}\qquad\textbf{(E)}\ \frac{15}{16} $

Bangladesh Mathematical Olympiad 2020 Final, #3

[u]Prottasha[/u] has a 10 sided dice. She throws the dice two times and sum the numbers she gets. Which number has the most probability to come out?