This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2024 Junior Macedonian Mathematical Olympiad, 2

It is known that in a group of $2024$ students each student has at least $1011$ acquaintances among the remaining members of the group. What is more, there exists a student that has at least $1012$ acquaintances in the group. Prove that for every pair of students $X, Y$, there exist students $X_0 = X, X_1, ..., X_{n - 1}, X_n = Y$ in the group such that for every index $i = 0, ..., n - 1$, the students $X_i$ and $X_{i + 1}$ are acquaintances. [i]Proposed by Mirko Petruševski[/i]

2000 239 Open Mathematical Olympiad, 4

A graph is called 2-connected if after removing any vertex the remaining graph is still connected. Prove that for any 2-connected graph with degrees more than two, one can remove a vertex so that the remaining graph is still 2-connected.