This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2015 District Olympiad, 4

Let $ \left( x_n\right)_{n\ge 1} $ be a sequence of real numbers of the interval $ [1,\infty) . $ Suppose that the sequence $ \left( \left[ x_n^k\right]\right)_{n\ge 1} $ is convergent for all natural numbers $ k. $ Prove that $ \left( x_n\right)_{n\ge 1} $ is convergent. Here, $ [\beta ] $ means the greatest integer smaller than $ \beta . $