This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2014 Cezar Ivănescu, 1

For a sequence $ \left( x_n \right)_{n\ge 1} $ of real numbers that are at least $ 1, $ prove that the series $ \sum_{i=1}^{\infty } \frac{1}{x_i} $ converges if and only if the series $ \sum_{i=1}^{\infty } \frac{1}{1+x_i} $ converges if and only if the series $ \sum_{i=1}^{\infty } \frac{1}{\lfloor x_i\rfloor } $ converges.