This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

Gheorghe Țițeica 2024, P1

Find all continuous functions $f,g:\mathbb{R}\rightarrow\mathbb{R}$ such that for any sequences $(a_n)_{n\geq 1}$ and $(b_n)_{n\geq 1}$ such that the sequence $(a_n+b_n)_{n\geq 1}$ is convergent, the sequence $(f(a_n)+g(b_n))_{n\geq 1}$ is also convergent.