This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2025 Vietnam National Olympiad, 1

Let $P(x) = x^4-x^3+x$. a) Prove that for all positive real numbers $a$, the polynomial $P(x) - a$ has a unique positive zero. b) A sequence $(a_n)$ is defined by $a_1 = \dfrac{1}{3}$ and for all $n \geq 1$, $a_{n+1}$ is the positive zero of the polynomial $P(x) - a_n$. Prove that the sequence $(a_n)$ converges, and find the limit of the sequence.