This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2025 Turkey Team Selection Test, 4

Let $a,b,c$ be given pairwise coprime positive integers where $a>bc$. Let $m<n$ be positive integers. We call $m$ to be a grandson of $n$ if and only if, for all possible piles of stones whose total mass adds up to $n$ and consist of stones with masses $a,b,c$, it's possible to take some of the stones out from this pile in a way that in the end, we can obtain a new pile of stones with total mass of $m$. Find the greatest possible number that doesn't have any grandsons.

2015 Korea National Olympiad, 4

For a positive integer $n$, $a_1, a_2, \cdots a_k$ are all positive integers without repetition that are not greater than $n$ and relatively prime to $n$. If $k>8$, prove the following. $$\sum_{i=1}^k |a_i-\frac{n}{2}|<\frac{n(k-4)}{2}$$