This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 5

2021 Argentina National Olympiad, 1

You have two blackboards $A$ and $B$. You have to write on them some of the integers greater than or equal to $2$ and less than or equal to $20$ in such a way that each number on blackboard $A$ is co-prime with each number on blackboard $B.$ Determine the maximum possible value of multiplying the number of numbers written in $A$ by the number of numbers written in $B$.

2024 Abelkonkurransen Finale, 1a

Determine all integers $n \ge 2$ such that $n \mid s_n-t_n$ where $s_n$ is the sum of all the integers in the interval $[1,n]$ that are mutually prime to $n$, and $t_n$ is the sum of the remaining integers in the same interval.

2018 Rioplatense Mathematical Olympiad, Level 3, 3

Determine all the triples $\{a, b, c \}$ of positive integers coprime (not necessarily pairwise prime) such that $a + b + c$ simultaneously divides the three numbers $a^{12} + b^{12}+ c^{12}$, $ a^{23} + b^{23} + c^{23} $ and $ a^{11004} + b^{11004} + c^{11004}$

2021 Argentina National Olympiad Level 2, 1

You have two blackboards $A$ and $B$. You have to write on them some of the integers greater than or equal to $2$ and less than or equal to $20$ in such a way that each number on blackboard $A$ is co-prime with each number on blackboard $B.$ Determine the maximum possible value of multiplying the number of numbers written in $A$ by the number of numbers written in $B$.

2022 Bulgaria National Olympiad, 3

Let $x>y>2022$ be positive integers such that $xy+x+y$ is a perfect square. Is it possible for every positive integer $z$ from the interval $[x+3y+1,3x+y+1]$ the numbers $x+y+z$ and $x^2+xy+y^2$ not to be coprime?