This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4

2006 AMC 12/AHSME, 18

The function $ f$ has the property that for each real number $ x$ in its domain, $ 1/x$ is also in its domain and \[ f(x) \plus{} f\left(\frac {1}{x}\right) \equal{} x. \]What is the largest set of real numbers that can be in the domain of $ f$? $ \textbf{(A) } \{ x | x\ne 0\} \qquad \textbf{(B) } \{ x | x < 0\} \qquad \textbf{(C) }\{ x | x > 0\}\\ \textbf{(D) } \{ x | x\ne \minus{} 1 \text{ and } x\ne 0 \text{ and } x\ne 1\} \qquad \textbf{(E) } \{ \minus{} 1,1\}$

2011 Romania National Olympiad, 3

Let be three positive real numbers $ a,b,c. $ Show that the function $ f:\mathbb{R}\longrightarrow\mathbb{R} , $ $$ f(x)=\frac{a^x}{b^x+c^x} +\frac{b^x}{a^x+c^x} +\frac{c^x}{a^x+b^x} , $$ is nondecresing on the interval $ \left[ 0,\infty \right) $ and nonincreasing on the interval $ \left( -\infty ,0 \right] . $

2016 Germany National Olympiad (4th Round), 6

Let \[ f(x_1,x_2,x_3,x_4,x_5,x_6,x_7)=x_1x_2x_4+x_2x_3x_5+x_3x_4x_6+x_4x_5x_7+x_5x_6x_1+x_6x_7x_2+x_7x_1x_3 \] be defined for non-negative real numbers $x_1,x_2,\dots,x_7$ with sum $1$. Prove that $f(x_1,x_2,\dots,x_7)$ has a maximum value and find that value.

2016 German National Olympiad, 6

Let \[ f(x_1,x_2,x_3,x_4,x_5,x_6,x_7)=x_1x_2x_4+x_2x_3x_5+x_3x_4x_6+x_4x_5x_7+x_5x_6x_1+x_6x_7x_2+x_7x_1x_3 \] be defined for non-negative real numbers $x_1,x_2,\dots,x_7$ with sum $1$. Prove that $f(x_1,x_2,\dots,x_7)$ has a maximum value and find that value.