This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2014 Cezar Ivănescu, 2

[b]a)[/b] Give an example of function $ f:\mathbb{R}\longrightarrow\mathbb{R}_{>0 } $ that admits a primitive $ F:\mathbb{R}\longrightarrow\mathbb{R}_{>0 } $ having the property that $ F^e $ is a primitive of $ f^e. $ [b]b)[/b] Prove that there is no derivable function $ g:\mathbb{R}\longrightarrow\mathbb{R} $ that has a primitive $ G:\mathbb{R}\longrightarrow\mathbb{R} $ such that $ e^G $ is a primitive of $ e^g. $