This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 36

2020 Brazil Team Selection Test, 3

Let $x_1, x_2, \dots, x_n$ be different real numbers. Prove that \[\sum_{1 \leqslant i \leqslant n} \prod_{j \neq i} \frac{1-x_{i} x_{j}}{x_{i}-x_{j}}=\left\{\begin{array}{ll} 0, & \text { if } n \text { is even; } \\ 1, & \text { if } n \text { is odd. } \end{array}\right.\]

1959 Putnam, A6

Let $m$ and $n$ be integers greater than $1$ and $a_1 ,a_2 ,\ldots, a_{m+1}$ be real numbers. Prove that there exist real $n\times n$ matrices $A_1 ,A_2,\ldots, A_m$ such that (i) $\det(A_j) =a_j$ for $j=1,2,\ldots,m$ and (ii) $\det(A_1 +A_2 +\ldots+A_m)=a_{m+1}.$

2010 Gheorghe Vranceanu, 2

Let be a natural number $ n, $ a number $ t\in (0,1) $ and $ n+1 $ numbers $ a_0\ge a_1\ge a_2\ge\cdots\ge a_n\ge 0. $ Prove the following matrix inequality: $$ \begin{vmatrix}\frac{(1+t\sqrt{-1})^2}{1+t^2} & -1 & 0& 0 & \cdots & 0 & 0 \\ 0 & \frac{(1+t\sqrt{-1})^2}{1+t^2} & -1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \frac{(1+t\sqrt{-1})^2}{1+t^2} & -1 \\ a_0 & a_1 & a_2 & a_3 & \cdots & a_{n-1} & a_n \end{vmatrix}^2\le a_0^2\left( 1+\frac{1}{t^2} \right) $$

1969 Putnam, A2

Tags: determinant
Let $D_n$ be the determinant of order $n$ of which the element in the $i$-th row and the $j$-th column is $|i-j|.$ Show that $D_n$ is equal to $$(-1)^{n-1}(n-1)2^{n-2}.$$

2021 Simon Marais Mathematical Competition, A3

Let $\mathcal{M}$ be the set of all $2021 \times 2021$ matrices with at most two entries in each row equal to $1$ and all other entries equal to $0$. Determine the size of the set $\{ \det A : A \in M \}$. [i]Here $\det A$ denotes the determinant of the matrix $A$.[/i]

2019 District Olympiad, 3

Let $n$ be an odd natural number and $A,B \in \mathcal{M}_n(\mathbb{C})$ be two matrices such that $(A-B)^2=O_n.$ Prove that $\det(AB-BA)=0.$

1984 Spain Mathematical Olympiad, 8

Find the remainder upon division by $x^2-1$ of the determinant $$\begin{vmatrix} x^3+3x & 2 & 1 & 0 \\ x^2+5x & 3 & 0 & 2 \\x^4 +x^2+1 & 2 & 1 & 3 \\x^5 +1 & 1 & 2 & 3 \\ \end{vmatrix}$$

2018 Korea USCM, 4

$n\geq 2$ is a given integer. For two permuations $(\alpha_1,\cdots,\alpha_n)$ and $(\beta_1,\cdots,\beta_n)$ of $1,\cdots,n$, consider $n\times n$ matrix $A= \left(a_{ij} \right)_{1\leq i,j\leq n}$ defined by $a_{ij} = (1+\alpha_i \beta_j )^{n-1}$. Find every possible value of $\det(A)$.

2020 Thailand TST, 3

Let $x_1, x_2, \dots, x_n$ be different real numbers. Prove that \[\sum_{1 \leqslant i \leqslant n} \prod_{j \neq i} \frac{1-x_{i} x_{j}}{x_{i}-x_{j}}=\left\{\begin{array}{ll} 0, & \text { if } n \text { is even; } \\ 1, & \text { if } n \text { is odd. } \end{array}\right.\]

1992 Putnam, B5

Let $D_n$ denote the value of the $(n -1) \times (n - 1)$ determinant $$ \begin{pmatrix} 3 & 1 &1 & \ldots & 1\\ 1 & 4 &1 & \ldots & 1\\ 1 & 1 & 5 & \ldots & 1\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & 1 & 1 & \ldots & n+1 \end{pmatrix}.$$ Is the set $\left\{ \frac{D_n }{n!} \, | \, n \geq 2\right\}$ bounded?

2020 Azerbaijan IMO TST, 3

Let $x_1, x_2, \dots, x_n$ be different real numbers. Prove that \[\sum_{1 \leqslant i \leqslant n} \prod_{j \neq i} \frac{1-x_{i} x_{j}}{x_{i}-x_{j}}=\left\{\begin{array}{ll} 0, & \text { if } n \text { is even; } \\ 1, & \text { if } n \text { is odd. } \end{array}\right.\]