This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 178

2021 Polish Junior MO First Round, 5

Are there four positive integers whose sum is $2^{1002}$ and product is $5^{1002}$? Justify your answer.

1987 Mexico National Olympiad, 4

Calculate the product of all positive integers less than $100$ and having exactly three positive divisors. Show that this product is a square.

2013 Dutch Mathematical Olympiad, 4

For a positive integer n the number $P(n)$ is the product of the positive divisors of $n$. For example, $P(20) = 8000$, as the positive divisors of $20$ are $1, 2, 4, 5, 10$ and $20$, whose product is $1 \cdot 2 \cdot 4 \cdot 5 \cdot 10 \cdot 20 = 8000$. (a) Find all positive integers $n$ satisfying $P(n) = 15n$. (b) Show that there exists no positive integer $n$ such that $P(n) = 15n^2$.

1996 Czech And Slovak Olympiad IIIA, 4

Tags: geometry , product , angle
Points $A$ and $B$ on the rays $CX$ and $CY$ respectively of an acute angle $XCY$ are given so that $CX < CA = CB < CY$. Construct a line meeting the ray $CX$ and the segments $AB,BC$ at $K,L,M$, respectively, such that $KA \cdot YB = XA \cdot MB = LA\cdot LB \ne 0$.

1976 Chisinau City MO, 120

Tags: algebra , product , radical
Find the product of all numbers of the form $\sqrt[m]{m}-\sqrt[k]{k}$ , $m ,k$ are natural numbers satisfying the inequalities $1 \le k < m \le n$, where $n> 3$.

Oliforum Contest V 2017, 8

Tags: sum , product , algebra
Fix $a_1, . . . , a_n \in (0, 1)$ and define $$f(I) = \prod_{i \in I} a_i \cdot \prod_{j \notin I} (1 - a_j)$$ for each $I \subseteq \{1, . . . , n\}$. Assuming that $$\sum_{I\subseteq \{1,...,n\}, |I| odd} {f(I)} = \frac12,$$ show that at least one $a_i$ has to be equal to $\frac12$. (Paolo Leonetti)

2003 Singapore Senior Math Olympiad, 3

Tags: algebra , sum , product
(i) Find a formula for $S_n = -1^2 \times 2 + 2^2 \times 3 - 3^2 \times 4 + 4^2 \times 5 -... + (-l)^n n^2 \times (n + 1)$ in terms of the positive integer $n$. Justify your answer. (As an example, one has $1 + 2 + 3 +...+n = \frac{n(n+1)}{2}$) (ii) Using your formula in (i), find the value of $ -1^2 \times 2 + 2^2 \times 3 - 3^2 \times 4 + 4^2 \times 5 -... + (-l)^{100} 100^2 \times (100 + 1)$

1997 Israel National Olympiad, 3

Let $n?$ denote the product of all primes smaller than $n$. Prove that $n? > n$ holds for any natural number $n > 3$.

1936 Moscow Mathematical Olympiad, 026

Find $4$ consecutive positive integers whose product is $1680$.

2020 Dutch BxMO TST, 5

A set S consisting of $2019$ (different) positive integers has the following property: [i]the product of every 100 elements of $S$ is a divisor of the product of the remaining $1919$ elements[/i]. What is the maximum number of prime numbers that $S$ can contain?

1970 IMO Shortlist, 4

Find all positive integers $n$ such that the set $\{n,n+1,n+2,n+3,n+4,n+5\}$ can be partitioned into two subsets so that the product of the numbers in each subset is equal.

2001 Estonia Team Selection Test, 5

Find the exponent of $37$ in the representation of the number $111...... 11$ with $3\cdot 37^{2000}$ digits equals to $1$, as product of prime powers

2004 Thailand Mathematical Olympiad, 18

Find positive reals $a, b, c$ which maximizes the value of $abc$ subject to the constraint that $b(a^2 + 2) + c(a + 2) = 12$.

2024 Czech-Polish-Slovak Junior Match, 2

How many non-empty subsets of $\{1,2,\dots,11\}$ are there with the property that the product of its elements is the cube of an integer?

2015 Balkan MO Shortlist, N5

For a positive integer $s$, denote with $v_2(s)$ the maximum power of $2$ that divides $s$. Prove that for any positive integer $m$ that: $$v_2\left(\prod_{n=1}^{2^m}\binom{2n}{n}\right)=m2^{m-1}+1.$$ (FYROM)

2022 Indonesia TST, N

Let $n$ be a natural number, with the prime factorisation \[ n = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} \] where $p_1, \ldots, p_r$ are distinct primes, and $e_i$ is a natural number. Define \[ rad(n) = p_1p_2 \cdots p_r \] to be the product of all distinct prime factors of $n$. Determine all polynomials $P(x)$ with rational coefficients such that there exists infinitely many naturals $n$ satisfying $P(n) = rad(n)$.

2002 Singapore Senior Math Olympiad, 2

The vertices of a triangle inscribed in a circle are the points of tangency of a triangle circumscribed about the circle. Prove that the product of the perpendicular distances from any point on the circle to the sides of the inscribed triangle is the same as the product of the perpendicular distances from the same point to the sides of the circumscribed triangle.

2009 Singapore Junior Math Olympiad, 5

Let $a, b$ be positive real numbers satisfying $a + b = 1$. Show that if $x_1,x_2,...,x_5$ are positive real numbers such that $x_1x_2...x_5 = 1$, then $(ax_1+b)(ax_2+b)...(ax_5+b)>1$

1992 All Soviet Union Mathematical Olympiad, 575

A plane intersects a sphere in a circle $C$. The points $A$ and $B$ lie on the sphere on opposite sides of the plane. The line joining $A$ to the center of the sphere is normal to the plane. Another plane $p$ intersects the segment $AB$ and meets $C$ at $P$ and $Q$. Show that $BP\cdot BQ$ is independent of the choice of $p$.

1994 North Macedonia National Olympiad, 3

a) Let $ x_1, x_2, ..., x_n $ ($ n> 2 $) be negative real numbers and $ x_1 + x_2 + ... + x_n = m. $ Determine the maximum value of the sum $ S = x_1x_2 + x_1x_3 + \dots + x_1x_n + x_2x_3 + x_2x_4 + \dots + x_2x_n + \dots + x_ {n-1} x_n. $ b) Let $ x_1, x_2, ..., x_n $ ($ n> 2 $) be nonnegative natural numbers and $ x_1 + x_2 + ... + x_n = m. $ Determine the maximum value of the sum $ S = x_1x_2 + x_1x_3 + \dots + x_1x_n + x_2x_3 + x_2x_4 + \dots + x_2x_n + \dots + x_ {n-1} x_n. $

2016 Lusophon Mathematical Olympiad, 1

Consider $10$ distinct positive integers that are all prime to each other (that is, there is no a prime factor common to all), but such that any two of them are not prime to each other. What is the smallest number of distinct prime factors that may appear in the product of $10$ numbers?

1991 Poland - Second Round, 1

The numbers $ a_i $, $ b_i $, $ c_i $, $ d_i $ satisfy the conditions $ 0\leq c_i \leq a_i \leq b_i \leq d_i $ and $ a_i+b_i = c_i+d_i $ for $ i=1,2 ,\ldots,n$. Prove that $$ \prod_{i=1}^n a_i + \prod_{i=1}^n b_i \leq \prod_{i=1}^n c_i + \prod_{i=1}^n d_i$$

2020 Thailand TST, 3

Let $x_1, x_2, \dots, x_n$ be different real numbers. Prove that \[\sum_{1 \leqslant i \leqslant n} \prod_{j \neq i} \frac{1-x_{i} x_{j}}{x_{i}-x_{j}}=\left\{\begin{array}{ll} 0, & \text { if } n \text { is even; } \\ 1, & \text { if } n \text { is odd. } \end{array}\right.\]

2019 Tournament Of Towns, 4

Each segment whose endpoints are the vertices of a given regular $100$-gon is colored red, if the number of vertices between its endpoints is even, and blue otherwise. (For example, all sides of the $100$-gon are red.) A number is placed in every vertex so that the sum of their squares is equal to $1$. On each segment the product of the numbers at its endpoints is written. The sum of the numbers on the blue segments is subtracted from the sum of the numbers on the red segments. What is the greatest possible result? (Ilya Bogdanov)

1992 Bundeswettbewerb Mathematik, 2

A positive integer $n$ is called [i]good [/i] if they sum up in one and only one way at least of two positive integers whose product also has the value $n$. Here representations that differ only in the order of the summands are considered the same viewed. Find all good positive integers.