This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 36

2023 District Olympiad, P2

Let $A{}$ and $B$ be invertible $n\times n$ matrices with real entries. Suppose that the inverse of $A+B^{-1}$ is $A^{-1}+B$. Prove that $\det(AB)=1$. Does this property hold for $2\times 2$ matrices with complex entries?

2000 District Olympiad (Hunedoara), 2

Calculate the determinant of the $ n\times n $ complex matrix $ \left(a_j^i\right)_{1\le j\le n}^{1\le i\le n} $ defined by $$ a_j^i=\left\{\begin{matrix} 1+x^2,\quad i=j\\x,\quad |i-j|=1\\0,\quad |i-j|\ge 2\end{matrix}\right. , $$ where $ n $ is a natural number greater than $ 2. $

2000 Moldova National Olympiad, Problem 1

Let $1=d_1<d_2<\ldots<d_{2m}=n$ be the divisors of a positive integer $n$, where $n$ is not a perfect square. Consider the determinant $$D=\begin{vmatrix}n+d_1&n&\ldots&n\\n&n+d_2&\ldots&n\\\ldots&\ldots&&\ldots\\n&n&\ldots&n+d_{2m}\end{vmatrix}.$$ (a) Prove that $n^m$ divides $D$. (b) Prove that $1+d_1+d_2+\ldots+d_{2m}$ divides $D$.

2019 Jozsef Wildt International Math Competition, W. 44

We consider a natural number $n$, $n \geq 2$ and the matrices \begin{tabular}{cc} $A= \begin{pmatrix} 1 & 2 & 3 & \cdots & n\\ n & 1 & 2 & \cdots & n - 1\\ n - 1 & n & 1 & \cdots & n - 2\\ \cdots & \cdots & \cdots & \cdots & \cdots\\2 & 3 & 4 & \cdots & 1 \end{pmatrix}$ \end{tabular} Show that$$\epsilon^ndet\left(I_n-A^{2n}\right)+\epsilon^{n-1}det\left(\epsilon I_n-A^{2n}\right)+\epsilon^{n-2}det\left(\epsilon^2 I_n-A^{2n}\right)+\cdots +det\left(\epsilon^n I_n-A^{2n}\right)$$ $$=n(-1)^{n-1}\left[\frac{n^n(n+1)}{2}\right]^{2n^2-4n}\left(1+(n+1)^{2n}\left(2n+(-1)^n{{2n}\choose{n}}\right)\right)$$where $\epsilon \in \mathbb{C}\backslash \mathbb{R}$, $\epsilon^{n+1}=1$

2021 Simon Marais Mathematical Competition, A3

Let $\mathcal{M}$ be the set of all $2021 \times 2021$ matrices with at most two entries in each row equal to $1$ and all other entries equal to $0$. Determine the size of the set $\{ \det A : A \in M \}$. [i]Here $\det A$ denotes the determinant of the matrix $A$.[/i]

2019 Korea USCM, 4

For any $n\times n$ unitary matrices $A,B$, prove that $|\det (A+2B)|\leq 3^n$.

2020 Azerbaijan IMO TST, 3

Let $x_1, x_2, \dots, x_n$ be different real numbers. Prove that \[\sum_{1 \leqslant i \leqslant n} \prod_{j \neq i} \frac{1-x_{i} x_{j}}{x_{i}-x_{j}}=\left\{\begin{array}{ll} 0, & \text { if } n \text { is even; } \\ 1, & \text { if } n \text { is odd. } \end{array}\right.\]

2024 IMC, 7

Let $n$ be a positive integer. Suppose that $A$ and $B$ are invertible $n \times n$ matrices with complex entries such that $A+B=I$ (where $I$ is the identity matrix) and \[(A^2+B^2)(A^4+B^4)=A^5+B^5.\] Find all possible values of $\det(AB)$ for the given $n$.

1985 Traian Lălescu, 1.4

Without calculating the value of the determinant $$ \begin{vmatrix}1 &1 &3& 1\\1& 2& 3 &5\\ 3& 0& 5& 5\\ 0& a& -11a& a^{13}+9a\end{vmatrix} , $$ show that it is divisible by $ 26, $ for any integer $ a. $

1984 Spain Mathematical Olympiad, 8

Find the remainder upon division by $x^2-1$ of the determinant $$\begin{vmatrix} x^3+3x & 2 & 1 & 0 \\ x^2+5x & 3 & 0 & 2 \\x^4 +x^2+1 & 2 & 1 & 3 \\x^5 +1 & 1 & 2 & 3 \\ \end{vmatrix}$$

1959 Putnam, A6

Let $m$ and $n$ be integers greater than $1$ and $a_1 ,a_2 ,\ldots, a_{m+1}$ be real numbers. Prove that there exist real $n\times n$ matrices $A_1 ,A_2,\ldots, A_m$ such that (i) $\det(A_j) =a_j$ for $j=1,2,\ldots,m$ and (ii) $\det(A_1 +A_2 +\ldots+A_m)=a_{m+1}.$