This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 30

2005 Singapore Senior Math Olympiad, 1

The digits of a $3$-digit number are interchanged so that none of the digits retain their original position. The difference of the two numbers is a $2$-digit number and is a perfect square. Find the difference.

2001 Singapore MO Open, 3

Suppose that there are $2001$ golf balls which are numbered from $1$ to $2001$ respectively, and some of these golf balls are placed inside a box. It is known that the difference between the two numbers of any two golf balls inside the box is neither $5$ nor $8$. How many such golf balls the box can contain at most? Justify your answer.

2006 Tournament of Towns, 3

(a) Prove that from $2007$ given positive integers, one of them can be chosen so the product of the remaining numbers is expressible in the form $a^2 - b^2$ for some positive integers $a$ and $b$. (2) (b) One of $2007$ given positive integers is $2006$. Prove that if there is a unique number among them such that the product of the remaining numbers is expressible in the form $a^2 - b^2$ for some positive integers $a$ and $b$, then this unique number is $2006$. (2)

1991 All Soviet Union Mathematical Olympiad, 545

The numbers $1, 2, 3, ... , n$ are written on a blackboard (where $n \ge 3$). A move is to replace two numbers by their sum and non-negative difference. A series of moves makes all the numbers equal $k$. Find all possible $k$

1975 Chisinau City MO, 101

Prove that among any $k + 1$ natural numbers there are two numbers whose difference is divisible by $k$.