This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 408

2017 Czech And Slovak Olympiad III A, 6

Given is a nonzero integer $k$. Prove that equation $k =\frac{x^2 - xy + 2y^2}{x + y}$ has an odd number of ordered integer pairs $(x, y)$ just when $k$ is divisible by seven.

2017 Czech-Polish-Slovak Match, 3

Let ${k}$ be a fi xed positive integer. A finite sequence of integers ${x_1,x_2, ..., x_n}$ is written on a blackboard. Pepa and Geoff are playing a game that proceeds in rounds as follows. - In each round, Pepa first partitions the sequence that is currently on the blackboard into two or more contiguous subsequences (that is, consisting of numbers appearing consecutively). However, if the number of these subsequences is larger than ${2}$, then the sum of numbers in each of them has to be divisible by ${k}$. - Then Geoff selects one of the subsequences that Pepa has formed and wipes all the other subsequences from the blackboard. The game fi nishes once there is only one number left on the board. Prove that Pepa may choose his moves so that independently of the moves of Geoff, the game fi nishes after at most ${3k}$ rounds. (Poland)

2021 Durer Math Competition Finals, 14

How many functions $f : \{1, 2, . . . , 16\} \to \{1, 2, . . . , 16\}$ have the property that $f(f(x))-4x$ is divisible by $17$ for all integers $1 \le x \le 16$?

1953 Moscow Mathematical Olympiad, 236

Prove that $n^2 + 8n + 15$ is not divisible by $n + 4$ for any positive integer $n$.

2003 Austrian-Polish Competition, 7

Put $f(n) = \frac{n^n - 1}{n - 1}$. Show that $n!^{f(n)}$ divides $(n^n)! $. Find as many positive integers as possible for which $n!^{f(n)+1}$ does not divide $(n^n)!$ .

2008 Postal Coaching, 3

Prove that for each natural number $m \ge 2$, there is a natural number $n$ such that $3^m$ divides $n^3 + 17$ but $3^{m+1}$ does not divide it.

2018 Saudi Arabia IMO TST, 1

Find all functions $f : Z^+ \to Z^+$ satisfying $f (1) = 2, f (2) \ne 4$, and max $\{f (m) + f (n), m + n\} |$ min $\{2m + 2n, f (m + n) + 1\}$ for all $m, n \in Z^+$.

2008 Estonia Team Selection Test, 4

Sequence $(G_n)$ is defined by $G_0 = 0, G_1 = 1$ and $G_n = G_{n-1} + G_{n-2} + 1$ for every $n \ge2$. Prove that for every positive integer $m$ there exist two consecutive terms in the sequence that are both divisible by $m$.

2018 Saudi Arabia GMO TST, 2

Two positive integers $m$ and $n$ are called [i]similar [/i] if one of them can be obtained from the other one by swapping two digits (note that a $0$-digit cannot be swapped with the leading digit). Find the greatest integer $N$ such that N is divisible by $13$ and any number similar to $N$ is not divisible by $13$.

2019 Ukraine Team Selection Test, 2

Polynomial $p(x)$ with real coefficients, which is different from the constant, has the following property: [i] for any naturals $n$ and $k$ the $\frac{p(n+1)p(n+2)...p(n+k)}{p(1)p(2)...p(k)}$ is an integer.[/i] Prove that this polynomial is divisible by $x$.

2015 Belarus Team Selection Test, 1

Given $m,n \in N$ such that $M>n^{n-1}$ and the numbers $m+1, m+2, ..., m+n$ are composite. Prove that exist distinct primes $p_1,p_2,...,p_n$ such that $M+k$ is divisible by $p_k$ for any $k=1,2,...,n$. Tuymaada Olympiad 2004, C.A.Grimm. USA

1972 Spain Mathematical Olympiad, 7

Prove that for every positive integer $n$, the number $$A_n = 5^n + 2 \cdot 3^{n-1} + 1$$ is a multiple of $8$.

1997 Tournament Of Towns, (524) 1

How many integers from $1$ to $1997$ have the sum of their digits divisible by $5$? (AI Galochkin)

2013 QEDMO 13th or 12th, 2

Let $p$ be a prime number and $n, k$ and $q$ natural numbers, where $q\le \frac{n -1}{p-1}$ should be. Let $M$ be the set of all integers $m$ from $0$ to $n$, for which $m-k$ is divisible by $p$. Show that $$\sum_{m \in M} (-1) ^m {n \choose m}$$ is divisible by $p^q$.

2011 Argentina National Olympiad, 5

Find all integers $n$ such that $1<n<10^6$ and $n^3-1$ is divisible by $10^6 n-1$.

1998 Estonia National Olympiad, 4

Prove that if for a positive integer $n$ is $5^n + 3^n + 1$ is prime number, then $n$ is divided by $12$.

2013 Saudi Arabia Pre-TST, 3.2

Let $a_1, a_2,..., a_9$ be integers. Prove that if $19$ divides $a_1^9+a_2^9+...+a_9^9$ then $19$ divides the product $a_1a_2...a_9$.

1996 Singapore Team Selection Test, 3

Let $S = \{0, 1, 2, .., 1994\}$. Let $a$ and $b$ be two positive numbers in $S$ which are relatively prime. Prove that the elements of $S$ can be arranged into a sequence $s_1, s_2, s_3,... , s_{1995}$ such that $s_{i+1} - s_i \equiv \pm a$ or $\pm b$ (mod $1995$) for $i = 1, 2, ... , 1994$

1946 Moscow Mathematical Olympiad, 113

Prove that $n^2 + 3n + 5$ is not divisible by $121$ for any positive integer $n$.

1984 Tournament Of Towns, (071) T5

Prove that among $18$ consecutive three digit numbers there must be at least one which is divisible by the sum of its digits.

2008 Abels Math Contest (Norwegian MO) Final, 1

Let $s(n) = \frac16 n^3 - \frac12 n^2 + \frac13 n$. (a) Show that $s(n)$ is an integer whenever $n$ is an integer. (b) How many integers $n$ with $0 < n \le 2008$ are such that $s(n)$ is divisible by $4$?

2001 Paraguay Mathematical Olympiad, 3

Find a $10$-digit number, in which no digit is zero, that is divisible by the sum of their digits.

2010 Saudi Arabia Pre-TST, 1.3

1) Let $a$ and $b$ be relatively prime positive integers. Prove that there is a positive integer $n$ such that $1 \le n \le b$ and $b$ divides $a^n - 1$. 2) Prove that there is a multiple of $7^{2010}$ of the form $99... 9$ ($n$ nines), for some positive integer $n$ not exceeding $7^{2010}$.

2018 Hanoi Open Mathematics Competitions, 11

Find all positive integers $k$ such that there exists a positive integer $n$, for which $2^n + 11$ is divisible by $2^k - 1$.

2016 Dutch IMO TST, 2

Determine all pairs $(a, b)$ of integers having the following property: there is an integer $d \ge 2$ such that $a^n + b^n + 1$ is divisible by $d$ for all positive integers $n$.