This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 573

2005 Estonia National Olympiad, 3

How many such four-digit natural numbers divisible by $7$ exist such when changing the first and last number we also get a four-digit divisible by $7$?

2017 Hanoi Open Mathematics Competitions, 4

Put $S = 2^1 + 3^5 + 4^9 + 5^{13} + ... + 505^{2013} + 506^{2017}$. The last digit of $S$ is (A): $1$ (B): $3$ (C): $5$ (D): $7$ (E): None of the above.

2009 Tournament Of Towns, 3

Alex is going to make a set of cubical blocks of the same size and to write a digit on each of their faces so that it would be possible to form every $30$-digit integer with these blocks. What is the minimal number of blocks in a set with this property? (The digits $6$ and $9$ do not turn one into another.)

1965 All Russian Mathematical Olympiad, 059

A bus ticket is considered to be lucky if the sum of the first three digits equals to the sum of the last three ($6$ digits in Russian buses). Prove that the sum of all the lucky numbers is divisible by $13$.

2020 Malaysia IMONST 1, 9

What is the smallest positive multiple of $225$ that can be written using digits $0$ and $1$ only?

PEN A Problems, 103

When $4444^{4444}$ is written in decimal notation, the sum of its digits is $ A.$ Let $B$ be the sum of the digits of $A.$ Find the sum of the digits of $ B.$ ($A$ and $B$ are written in decimal notation.)

2019 IberoAmerican, 1

For each positive integer $n$, let $s(n)$ be the sum of the squares of the digits of $n$. For example, $s(15)=1^2+5^2=26$. Determine all integers $n\geq 1$ such that $s(n)=n$.

2015 Hanoi Open Mathematics Competitions, 2

The last digit of number $2017^{2017} - 2013^{2015}$ is (A): $2$, (B): $4$, (C): $6$, (D): $8$, (E): None of the above.

2017 Auckland Mathematical Olympiad, 3

The positive integer $N = 11...11$, whose decimal representation contains only ones, is divisible by $7$. Prove that this positive integer is also divisible by $13$.

2005 Estonia National Olympiad, 5

How many positive integers less than $10,000$ have an even number of even digits and an odd number of odd digits ? (Assume no number starts with zero.)

1998 All-Russian Olympiad Regional Round, 11.5

A whole number is written on the board. Its last digit is remembered is then erased and multiplied by $5$ added to the number that remained on the board after erasing. The number was originally written $7^{1998}$. After applying several such operations, can one get the number $1998^7$?

2001 Estonia National Olympiad, 1

John had to solve a math problem in the class. While cleaning the blackboard, he accidentally erased a part of his problem as well: the text that remained on board was $37 \cdot(72 + 3x) = 14**45$, where $*$ marks an erased digit. Show that John can still solve his problem, knowing that $x$ is an integer

2019 Dutch Mathematical Olympiad, 1

A [i]complete [/i] number is a $9$ digit number that contains each of the digits $1$ to $9$ exactly once. The [i]difference [/i] number of a number $N$ is the number you get by taking the differences of consecutive digits in $N$ and then stringing these digits together. For instance, the [i]difference [/i] number of $25143$ is equal to $3431$. The [i]complete [/i] number $124356879$ has the additional property that its [i]difference [/i] number, $12121212$, consists of digits alternating between $1$ and $2$. Determine all $a$ with $3 \le a \le 9$ for which there exists a [i]complete [/i] number $N$ with the additional property that the digits of its [i]difference[/i] number alternate between $1 $ and $a$.

2012 VJIMC, Problem 4

Find all positive integers $n$ for which there exists a positive integer $k$ such that the decimal representation of $n^k$ starts and ends with the same digit.

2009 Tournament Of Towns, 4

We increased some positive integer by $10\%$ and obtained a positive integer. Is it possible that in doing so we decreased the sum of digits exactly by $10\%$ ?

2014 Junior Regional Olympiad - FBH, 1

Tags: digit
If $a$ and $b$ are digits, how many are there $4$ digit numbers $\overline{3ab4}$ divisible with $9$ . Which numbers are they ($4$ digit numbers)?

2018 Pan-African Shortlist, N4

Let $S$ be a set of $49$-digit numbers $n$, with the property that each of the digits $1, 2, 3, \dots, 7$ appears in the decimal expansion of $n$ seven times (and $8, 9$ and $0$ do not appear). Show that no two distinct elements of $S$ divide each other.

2014 India PRMO, 2

The first term of a sequence is $2014$. Each succeeding term is the sum of the cubes of the digits of the previous term. What is the $2014$ th term of the sequence?

2004 Tournament Of Towns, 5

Two $10$-digit integers are called neighbours if they differ in exactly one digit (for example, integers $1234567890$ and $1234507890$ are neighbours). Find the maximal number of elements in the set of $10$-digit integers with no two integers being neighbours.

2010 Saudi Arabia IMO TST, 3

Consider the arithmetic sequence $8, 21,34,47,....$ a) Prove that this sequence contains infinitely many integers written only with digit $9$. b) How many such integers less than $2010^{2010}$ are in the se­quence?

IV Soros Olympiad 1997 - 98 (Russia), 10.3

Three different digits were used to create three different three-digit numbers forming an arithmetic progression. (In each number, all the digits are different.) What is the largest difference in this progression?

2004 Paraguay Mathematical Olympiad, 5

We have an integer $A$ such that $A^2$ is a four digit number, with $5$ in the ten's place . Find all possible values of $A$.

1983 All Soviet Union Mathematical Olympiad, 370

The infinite decimal notation of the real number $x$ contains all the digits. Let $u_n$ be the number of different $n$-digit segments encountered in $x$ notation. Prove that if for some $n$, $u_n \le (n+8)$, than $x$ is a rational number.

2000 Singapore MO Open, 3

Is there a positive integer with at most four digits whose value is increased by exactly $60\%$ when the first digit is moved to the end of the number? For example, when the first digit of $1234$ is moved to the end of the number, the result is the integer $2341$.

2009 Peru MO (ONEM), 1

For each positive integer $n$, let $c(n)$ be the number of digits of $n$. Let $A$ be a set of positive integers with the following property: If $a$ and $b$ are two distinct elements in $A$, then $c(a +b)+2 > c(a)+c(b)$. Find the largest number of elements that $A$ can have. PS. In the original wording: c(n) = ''cantidad de dıgitos''