This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 573

1983 IMO Longlists, 70

Let $d_n$ be the last nonzero digit of the decimal representation of $n!$. Prove that $d_n$ is aperiodic; that is, there do not exist $T$ and $n_0$ such that for all $n \geq n_0, d_{n+T} = d_n.$

2022 Cono Sur, 1

A positive integer is [i]happy[/i] if: 1. All its digits are different and not $0$, 2. One of its digits is equal to the sum of the other digits. For example, 253 is a [i]happy[/i] number. How many [i]happy[/i] numbers are there?

VMEO III 2006 Shortlist, N4

Given the positive integer $n$, find the integer $f(n)$ so that $f(n)$ is the next positive integer that is always a number whose all digits are divisible by $n$.

2022 IFYM, Sozopol, 4

A natural number $x$ is written on the board. In one move, we can take the number on the board and between any two of its digits in its decimal notation we can we put a sign $+$, or we may not put it, then we calculate the obtained result and we write it on the board in place of $x$. For example, from the number $819$. we can get $18$ by $8 + 1 + 9$, $90$ by $81 + 9$, and $27$ by $8 + 19$. Prove that no matter what $x$ is, we can reach a single digit number with at most $4$ moves.

2014 Singapore Junior Math Olympiad, 1

Consider the integers formed using the digits $0,1,2,3,4,5,6$, without repetition. Find the largest multiple of $55$. Justify your answer.

2004 All-Russian Olympiad Regional Round, 8.7

A set of five-digit numbers $\{N_1,... ,N_k\}$ is such that any five-digit a number whose digits are all in ascending order is the same in at least one digit with at least one of the numbers $N_1$,$...$ ,$N_k$. Find the smallest possible value of $k$.

2013 Argentina National Olympiad, 3

Find how many are the numbers of $2013$ digits $d_1d_2…d_{2013}$ with odd digits $d_1,d_2,…,d_{2013}$ such that the sum of $1809$ terms $$d_1 \cdot d_2+d_2\cdot d_3+…+d_{1809}\cdot d_{1810}$$ has remainder $1$ when divided by $4$ and the sum of $203$ terms $$d_{1810}\cdot d_{1811}+d_{1811}\cdot d_{1812}+…+d_{2012}\cdot d_{2013}$$ has remainder $1$ when dividing by $4$.

2022 OMpD, 3

Let $N$ be a positive integer. Initially, a positive integer $A$ is written on the board. At each step, we can perform one of the following two operations with the number written on the board: (i) Add $N$ to the number written on the board and replace that number with the sum obtained; (ii) If the number on the board is greater than $1$ and has at least one digit $1$, then we can remove the digit $1$ from that number, and replace the number initially written with this one (with removal of possible leading zeros) For example, if $N = 63$ and $A = 25$, we can do the following sequence of operations: $$25 \rightarrow 88 \rightarrow 151 \rightarrow 51 \rightarrow 5$$ And if $N = 143$ and $A = 2$, we can do the following sequence of operations: $$2 \rightarrow 145 \rightarrow 288 \rightarrow 431 \rightarrow 574 \rightarrow 717 \rightarrow 860 \rightarrow 1003 \rightarrow 3$$ For what values of $N$ is it always possible, regardless of the initial value of $A$ on the blackboard, to obtain the number $1$ on the blackboard, through a finite number of operations?

2020 Flanders Math Olympiad, 2

Every officially published book used to have an ISBN code (International Standard Book Number) which consisted of $10$ symbols. Such code looked like this: $$a_1a_2 . . . a_9a_{10}$$ with $a_1, . . . , a_9 \in \{0, 1, . . . , 9\}$ and $a_{10} \in \{0, 1, . . . , 9, X\}$. The symbol $X$ stood for the number $10$. With a valid ISBN code was $$a_1 + 2a2 + . . . + 9a_9 + 10a_{10}$$ a multiple of $11$. Prove the following statements. (a) If one symbol is changed in a valid ISBN code, the result is no valid ISBN code. (b) When two different symbols swap places in a valid ISBN code then the result is not a valid ISBN.

OIFMAT III 2013, 1

Find all four-digit perfect squares such that: $\bullet$ All your figures are less than $9$. $\bullet$ By increasing each of its digits by one unit, the resulting number is again a perfect square.

1962 Dutch Mathematical Olympiad, 3

Consider the positive integers written in the decimal system with $n$ digits, the start of which is not zero and where there are no two sevens next to each other. The number of these numbers is called $u_n$. Derive a relation that expresses $u_{n+2}$ in terms of $u_{n+1}$ and $u_n$.

2011 May Olympiad, 5

We consider all $14$-digit positive integers, divisible by $18$, whose digits are exclusively $ 1$ and $2$, but there are no consecutive digits $2$. How many of these numbers are there?

2016 Hanoi Open Mathematics Competitions, 1

How many are there $10$-digit numbers composed from the digits $1, 2, 3$ only and in which, two neighbouring digits differ by $1$ : (A): $48$ (B): $64$ (C): $72$ (D): $128$ (E): None of the above.

1983 IMO Shortlist, 24

Let $d_n$ be the last nonzero digit of the decimal representation of $n!$. Prove that $d_n$ is aperiodic; that is, there do not exist $T$ and $n_0$ such that for all $n \geq n_0, d_{n+T} = d_n.$

2000 May Olympiad, 3

To write all consecutive natural numbers from $1ab$ to $ab2$ inclusive, $1ab1$ digits have been used. Determine how many more digits are needed to write the natural numbers up to $aab$ inclusive. Give all chances. ($a$ and $b$ represent digits)

2001 Denmark MO - Mohr Contest, 2

If there is a natural number $n$ such that the number $n!$ has exactly $11$ zeros at the end? (With $n!$ is denoted the number $1\cdot 2\cdot 3 \cdot ... (n - )1 \cdot n$).

2000 Bundeswettbewerb Mathematik, 1b

Tags: number theory , sum , digit
Two natural numbers have the same decimal digits in different order and have the sum $999\cdots 999$. Is this possible when each of the numbers consists of $2000$ digits?

2019 Paraguay Mathematical Olympiad, 3

Let $\overline{ABCD}$ be a $4$-digit number. What is the smallest possible positive value of $\overline{ABCD}- \overline{DCBA}$?

1980 IMO Shortlist, 6

Find the digits left and right of the decimal point in the decimal form of the number \[ (\sqrt{2} + \sqrt{3})^{1980}. \]

2015 Cuba MO, 3

Determine the smallest integer of the form $\frac{ \overline{AB}}{B}$ .where $A$ and $B$ are three-digit positive integers and $\overline{AB}$ denotes the six-digit number that is form by writing the numbers $A$ and $B$ consecutively.

1965 German National Olympiad, 5

Determine all triples of nonzero decimal digits $(x,y,z)$ for which the equality $\sqrt{ \underbrace{xxx...x}_{2n}- \underbrace{yy...y}_{n}}= \underbrace{zzz...z}_{n}$ holds for at least two different natural numbers $n$.

1925 Eotvos Mathematical Competition, 2

How maay zeros are there at the end of the number $$1000! = 1 \cdot 2 \cdot 3 \cdot ... \cdot 999 \cdot 1000?$$

2009 Tournament Of Towns, 4

We increased some positive integer by $10\%$ and obtained a positive integer. Is it possible that in doing so we decreased the sum of digits exactly by $10\%$ ?