This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15

2012 CentroAmerican, 1

Find all positive integers that are equal to $700$ times the sum of its digits.

1975 IMO, 4

When $4444^{4444}$ is written in decimal notation, the sum of its digits is $ A.$ Let $B$ be the sum of the digits of $A.$ Find the sum of the digits of $ B.$ ($A$ and $B$ are written in decimal notation.)

2004 Austrian-Polish Competition, 1

Tags: digit sum
Let $S(n)$ be the sum of digits for any positive integer n (in decimal notation). Let $N=\displaystyle\sum_{k=10^{2003}}^{10{^{2004}-1}} S(k)$. Determine $S(N)$.

2019 IFYM, Sozopol, 8

Find whether the number of powers of 2, which have a digit sum smaller than $2019^{2019}$, is finite or infinite.

1991 Spain Mathematical Olympiad, 5

For a positive integer $n$, let $s(n)$ denote the sum of the binary digits of $n$. Find the sum $s(1)+s(2)+s(3)+...+s(2^k)$ for each positive integer $k$.

2012 Argentina Cono Sur TST, 4

Determine the number of positive integers $n \leq 1000$ such that the sum of the digits of $5n$ and the sum of the digits of $n$ are the same.

PEN A Problems, 103

When $4444^{4444}$ is written in decimal notation, the sum of its digits is $ A.$ Let $B$ be the sum of the digits of $A.$ Find the sum of the digits of $ B.$ ($A$ and $B$ are written in decimal notation.)

1975 IMO Shortlist, 6

When $4444^{4444}$ is written in decimal notation, the sum of its digits is $ A.$ Let $B$ be the sum of the digits of $A.$ Find the sum of the digits of $ B.$ ($A$ and $B$ are written in decimal notation.)

1977 Germany Team Selection Test, 4

When $4444^{4444}$ is written in decimal notation, the sum of its digits is $ A.$ Let $B$ be the sum of the digits of $A.$ Find the sum of the digits of $ B.$ ($A$ and $B$ are written in decimal notation.)

2013 India Regional Mathematical Olympiad, 1

Find the number of eight-digit numbers the sum of whose digits is $4$

1961 All-Soviet Union Olympiad, 3

Prove that among $39$ consecutive natural numbers, there is always one whose sum of digits (in base $10$) is divisible by $11$.

2018 Israel National Olympiad, 4

The three-digit number 999 has a special property: It is divisible by 27, and its digit sum is also divisible by 27. The four-digit number 5778 also has this property, as it is divisible by 27 and its digit sum is also divisible by 27. How many four-digit numbers have this property?

1977 Germany Team Selection Test, 4

When $4444^{4444}$ is written in decimal notation, the sum of its digits is $ A.$ Let $B$ be the sum of the digits of $A.$ Find the sum of the digits of $ B.$ ($A$ and $B$ are written in decimal notation.)

2016 Israel National Olympiad, 3

Denote by $S(n)$ the sum of digits of $n$. Given a positive integer $N$, we consider the following process: We take the sum of digits $S(N)$, then take its sum of digits $S(S(N))$, then its sum of digits $S(S(S(N)))$... We continue this until we are left with a one-digit number. We call the number of times we had to activate $S(\cdot)$ the [b]depth[/b] of $N$. For example, the depth of 49 is 2, since $S(49)=13\rightarrow S(13)=4$, and the depth of 45 is 1, since $S(45)=9$. [list=a] [*] Prove that every positive integer $N$ has a finite depth, that is, at some point of the process we get a one-digit number. [*] Define $x(n)$ to be the [u]minimal[/u] positive integer with depth $n$. Find the residue of $x(5776)\mod 6$. [*] Find the residue of $x(5776)-x(5708)\mod 2016$. [/list]

2013 IMAR Test, 2

For every non-negative integer $n$ , let $s_n$ be the sum of digits in the decimal expansion of $2^n$. Is the sequence $(s_n)_{n \in \mathbb{N}}$ eventually increasing ?