This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2018 China National Olympiad, 3

Let $q$ be a positive integer which is not a perfect cube. Prove that there exists a positive constant $C$ such that for all natural numbers $n$, one has $$\{ nq^{\frac{1}{3}} \} + \{ nq^{\frac{2}{3}} \} \geq Cn^{-\frac{1}{2}}$$ where $\{ x \}$ denotes the fractional part of $x$.