This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 545

1996 Estonia Team Selection Test, 1

Suppose that $x,y$ and $\frac{x^2+y^2+6}{xy}$ are positive integers . Prove that $\frac{x^2+y^2+6}{xy}$ is a perfect cube.

2016 India IMO Training Camp, 2

Let $m$ and $n$ be positive integers such that $m>n$. Define $x_k=\frac{m+k}{n+k}$ for $k=1,2,\ldots,n+1$. Prove that if all the numbers $x_1,x_2,\ldots,x_{n+1}$ are integers, then $x_1x_2\ldots x_{n+1}-1$ is divisible by an odd prime.

2024 Turkey EGMO TST, 2

Find all functions $f:\mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$ such that the conditions $\quad a) \quad a-b \mid f(a)-f(b)$ for all $a\neq b$ and $a,b \in \mathbb{Z}^{+}$ $\quad b) \quad f(\varphi(a))=\varphi(f(a))$ for all $a \in \mathbb{Z}^{+}$ where $\varphi$ is the Euler's totient function. holds

2018 China Team Selection Test, 6

Let $M,a,b,r$ be non-negative integers with $a,r\ge 2$, and suppose there exists a function $f:\mathbb{Z}\rightarrow\mathbb{Z}$ satisfying the following conditions: (1) For all $n\in \mathbb{Z}$, $f^{(r)}(n)=an+b$ where $f^{(r)}$ denotes the composition of $r$ copies of $f$ (2) For all $n\ge M$, $f(n)\ge 0$ (3) For all $n>m>M$, $n-m|f(n)-f(m)$ Show that $a$ is a perfect $r$-th power.

2003 Olympic Revenge, 2

Let $x_n$ the sequence defined by any nonnegatine integer $x_0$ and $x_{n+1}=1+\prod_{0 \leq i \leq n}{x_i}$ Show that there exists prime $p$ such that $p\not|x_n$ for any $n$.

2018 Pan-African Shortlist, N4

Let $S$ be a set of $49$-digit numbers $n$, with the property that each of the digits $1, 2, 3, \dots, 7$ appears in the decimal expansion of $n$ seven times (and $8, 9$ and $0$ do not appear). Show that no two distinct elements of $S$ divide each other.

2024 Brazil Cono Sur TST, 3

Find all positive integers $m$ that have some multiple of the form $x^2+5y^2+2024$, with $x$ and $y$ integers.

2012 Bosnia And Herzegovina - Regional Olympiad, 2

Let $a$, $b$, $c$ and $d$ be integers such that $ac$, $bd$ and $bc+ad$ are divisible with positive integer $m$. Show that numbers $bc$ and $ad$ are divisible with $m$

2019 India PRMO, 8

Let $F_k(a,b)=(a+b)^k-a^k-b^k$ and let $S={1,2,3,4,5,6,7,8,9,10}$. For how many ordered pairs $(a,b)$ with $a,b\in S$ and $a\leq b$ is $\frac{F_5(a,b)}{F_3(a,b)}$ an integer?

1978 IMO Longlists, 23

Let $S$ be the set of all the odd positive integers that are not multiples of $5$ and that are less than $30m$, $m$ being an arbitrary positive integer. What is the smallest integer $k$ such that in any subset of $k$ integers from $S$ there must be two different integers, one of which divides the other?

1989 IMO Shortlist, 27

Let $ m$ be a positive odd integer, $ m > 2.$ Find the smallest positive integer $ n$ such that $ 2^{1989}$ divides $ m^n \minus{} 1.$

2020 Iran Team Selection Test, 5

For every positive integer $k>1$ prove that there exist a real number $x$ so that for every positive integer $n<1398$: $$\left\{x^n\right\}<\left\{x^{n-1}\right\} \Longleftrightarrow k\mid n.$$ [i]Proposed by Mohammad Amin Sharifi[/i]

1984 IMO, 3

Let $a,b,c,d$ be odd integers such that $0<a<b<c<d$ and $ad=bc$. Prove that if $a+d=2^k$ and $b+c=2^m$ for some integers $k$ and $m$, then $a=1$.

2011 Morocco TST, 1

Prove that for any n natural, the number \[ \sum \limits_{k=0}^{n} \binom{2n+1}{2k+1} 2^{3k} \] cannot be divided by $5$.

2019 IFYM, Sozopol, 5

Prove that there exist a natural number $a$, for which 999 divides $2^{5n}+a.5^n$ for $\forall$ odd $n\in \mathbb{N}$ and find the smallest such $a$.

2015 ELMO Problems, 1

Define the sequence $a_1 = 2$ and $a_n = 2^{a_{n-1}} + 2$ for all integers $n \ge 2$. Prove that $a_{n-1}$ divides $a_n$ for all integers $n \ge 2$. [i]Proposed by Sam Korsky[/i]

1979 IMO Longlists, 25

If $p$ and $q$ are natural numbers so that \[ \frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+ \ldots -\frac{1}{1318}+\frac{1}{1319}, \] prove that $p$ is divisible with $1979$.

1969 IMO Longlists, 13

$(CZS 2)$ Let $p$ be a prime odd number. Is it possible to find $p-1$ natural numbers $n + 1, n + 2, . . . , n + p -1$ such that the sum of the squares of these numbers is divisible by the sum of these numbers?

1989 IMO Longlists, 86

Let $ m$ be a positive odd integer, $ m > 2.$ Find the smallest positive integer $ n$ such that $ 2^{1989}$ divides $ m^n \minus{} 1.$

2001 Saint Petersburg Mathematical Olympiad, 9.4

Let $a,b,c\in\mathbb{Z^{+}}$ such that $$(a^2-1, b^2-1, c^2-1)=1$$ Prove that $$(ab+c, bc+a, ca+b)=(a,b,c)$$ (As usual, $(x,y,z)$ means the greatest common divisor of numbers $x,y,z$) [I]Proposed by A. Golovanov[/i]

2014 Canadian Mathematical Olympiad Qualification, 3

Let $1000 \leq n = \text{ABCD}_{10} \leq 9999$ be a positive integer whose digits $\text{ABCD}$ satisfy the divisibility condition: $$1111 | (\text{ABCD} + \text{AB} \times \text{CD}).$$ Determine the smallest possible value of $n$.

2018 Iran MO (1st Round), 12

How many triples $(a,b,c)$ of positive integers strictly less than $51$ are there such that $a+b+c$ is divisible by $a, b$, and $c$?

2008 Germany Team Selection Test, 3

Find all surjective functions $ f: \mathbb{N} \to \mathbb{N}$ such that for every $ m,n \in \mathbb{N}$ and every prime $ p,$ the number $ f(m + n)$ is divisible by $ p$ if and only if $ f(m) + f(n)$ is divisible by $ p$. [i]Author: Mohsen Jamaali and Nima Ahmadi Pour Anari, Iran[/i]

2005 Taiwan TST Round 3, 3

Given an integer ${n>1}$, denote by $P_{n}$ the product of all positive integers $x$ less than $n$ and such that $n$ divides ${x^2-1}$. For each ${n>1}$, find the remainder of $P_{n}$ on division by $n$. [i]Proposed by John Murray, Ireland[/i]

Kvant 2022, M2714

Let $f{}$ and $g{}$ be polynomials with integers coefficients. The leading coefficient of $g{}$ is equal to 1. It is known that for infinitely many natural numbers $n{}$ the number $f(n)$ is divisible by $g(n)$ . Prove that $f(n)$ is divisible by $g(n)$ for all positive integers $n{}$ such that $g(n)\neq 0$. [i]From the folklore[/i]