This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 545

2017 JBMO Shortlist, NT2

Determine all positive integers n such that $n^2/ (n - 1)!$

2012 APMO, 3

Determine all the pairs $ (p , n )$ of a prime number $ p$ and a positive integer $ n$ for which $ \frac{ n^p + 1 }{p^n + 1} $ is an integer.

1960 IMO, 1

Determine all three-digit numbers $N$ having the property that $N$ is divisible by 11, and $\dfrac{N}{11}$ is equal to the sum of the squares of the digits of $N$.

2014 APMO, 3

Find all positive integers $n$ such that for any integer $k$ there exists an integer $a$ for which $a^3+a-k$ is divisible by $n$. [i]Warut Suksompong, Thailand[/i]

2010 Postal Coaching, 1

Let $n \in \mathbb N$ and $A_n$ set of all permutations $(a_1, \ldots, a_n)$ of the set $\{1, 2, \ldots , n\}$ for which \[k|2(a_1 + \cdots+ a_k), \text{ for all } 1 \leq k \leq n.\] Find the number of elements of the set $A_n$. [i]Proposed by Vidan Govedarica, Serbia[/i]

1998 IMO Shortlist, 1

Determine all pairs $(x,y)$ of positive integers such that $x^{2}y+x+y$ is divisible by $xy^{2}+y+7$.

2022 Germany Team Selection Test, 2

Find all positive integers $n\geq1$ such that there exists a pair $(a,b)$ of positive integers, such that $a^2+b+3$ is not divisible by the cube of any prime, and $$n=\frac{ab+3b+8}{a^2+b+3}.$$

1969 IMO Longlists, 43

$(MON 4)$ Let $p$ and $q$ be two prime numbers greater than $3.$ Prove that if their difference is $2^n$, then for any two integers $m$ and $n,$ the number $S = p^{2m+1} + q^{2m+1}$ is divisible by $3.$

2008 Germany Team Selection Test, 1

Find all pairs of natural numbers $ (a, b)$ such that $ 7^a \minus{} 3^b$ divides $ a^4 \plus{} b^2$. [i]Author: Stephan Wagner, Austria[/i]

2009 Brazil Team Selection Test, 1

Let $n \in \mathbb N$ and $A_n$ set of all permutations $(a_1, \ldots, a_n)$ of the set $\{1, 2, \ldots , n\}$ for which \[k|2(a_1 + \cdots+ a_k), \text{ for all } 1 \leq k \leq n.\] Find the number of elements of the set $A_n$. [i]Proposed by Vidan Govedarica, Serbia[/i]

2017 Macedonia JBMO TST, 1

Let $p$ be a prime number such that $3p+10$ is a sum of squares of six consecutive positive integers. Prove that $p-7$ is divisible by $36$.

2023 Indonesia TST, 1

Find all positive integers $n>2$ such that $$ n! \mid \prod_{ p<q\le n, p,q \, \text{primes}} (p+q)$$

2023 Pan-American Girls’ Mathematical Olympiad, 5

Tags: divisibility
Find all pairs of primes $(p,q)$ such that $6pq$ divides $$p^3+q^2+38$$

2017 Azerbaijan BMO TST, 2

Tags: divisibility , rmn
Determine all positive integers $n$ such that all positive integers less than or equal to $n$ and relatively prime to $n$ are pairwise coprime.

2020 Moldova Team Selection Test, 6

Let $n$, $(n \geq3)$ be a positive integer and the polynomial $f(x)=(1+x) \cdot (1+2x) \cdot (1+3x) \cdot ... \cdot (1+nx)$ $= a_0+a_1 \cdot x+a_2 \cdot x^2+a_3 \cdot x^3+...+a_n \cdot x^n$. Show that the number $a_3$ divides the number $k=C^2_{n+1} \cdot (2 \cdot C^2_n \cdot C^2_{n+1}-3 \cdot a_2).$

2012 IMO Shortlist, N8

Prove that for every prime $p>100$ and every integer $r$, there exist two integers $a$ and $b$ such that $p$ divides $a^2+b^5-r$.

1996 Estonia Team Selection Test, 1

Suppose that $x,y$ and $\frac{x^2+y^2+6}{xy}$ are positive integers . Prove that $\frac{x^2+y^2+6}{xy}$ is a perfect cube.

1974 IMO, 3

Prove that for any n natural, the number \[ \sum \limits_{k=0}^{n} \binom{2n+1}{2k+1} 2^{3k} \] cannot be divided by $5$.

2022 JBMO TST - Turkey, 1

For positive integers $a$ and $b$, if the expression $\frac{a^2+b^2}{(a-b)^2}$ is an integer, prove that the expression $\frac{a^3+b^3}{(a-b)^3}$ is an integer as well.

2018 China Team Selection Test, 5

Given a positive integer $k$, call $n$ [i]good[/i] if among $$\binom{n}{0},\binom{n}{1},\binom{n}{2},...,\binom{n}{n}$$ at least $0.99n$ of them are divisible by $k$. Show that exists some positive integer $N$ such that among $1,2,...,N$, there are at least $0.99N$ good numbers.

2018 OMMock - Mexico National Olympiad Mock Exam, 4

For each positive integer $n$ let $s(n)$ denote the sum of the decimal digits of $n$. Find all pairs of positive integers $(a, b)$ with $a > b$ which simultaneously satisfy the following two conditions $$a \mid b + s(a)$$ $$b \mid a + s(b)$$ [i]Proposed by Victor Domínguez[/i]

1969 IMO Shortlist, 49

$(NET 4)$ A boy has a set of trains and pieces of railroad track. Each piece is a quarter of circle, and by concatenating these pieces, the boy obtained a closed railway. The railway does not intersect itself. In passing through this railway, the train sometimes goes in the clockwise direction, and sometimes in the opposite direction. Prove that the train passes an even number of times through the pieces in the clockwise direction and an even number of times in the counterclockwise direction. Also, prove that the number of pieces is divisible by $4.$

1991 IMO Shortlist, 18

Find the highest degree $ k$ of $ 1991$ for which $ 1991^k$ divides the number \[ 1990^{1991^{1992}} \plus{} 1992^{1991^{1990}}.\]

1984 IMO Shortlist, 16

Let $a,b,c,d$ be odd integers such that $0<a<b<c<d$ and $ad=bc$. Prove that if $a+d=2^k$ and $b+c=2^m$ for some integers $k$ and $m$, then $a=1$.

2021 Science ON all problems, 2

Find all pairs $(p,q)$ of prime numbers such that $$p^q-4~|~q^p-1.$$ [i](Vlad Robu)[/i]