Found problems: 545
2010 Germany Team Selection Test, 3
Find all positive integers $n$ such that there exists a sequence of positive integers $a_1$, $a_2$,$\ldots$, $a_n$ satisfying: \[a_{k+1}=\frac{a_k^2+1}{a_{k-1}+1}-1\] for every $k$ with $2\leq k\leq n-1$.
[i]Proposed by North Korea[/i]
2022 Germany Team Selection Test, 2
Find all positive integers $n\geq1$ such that there exists a pair $(a,b)$ of positive integers, such that $a^2+b+3$ is not divisible by the cube of any prime, and $$n=\frac{ab+3b+8}{a^2+b+3}.$$
2022 Korea -Final Round, P5
Find all positive integers $m$ such that there exists integers $x$ and $y$ that satisfies $$m \mid x^2+11y^2+2022.$$
2022 Indonesia TST, N
Given positive odd integers $m$ and $n$ where the set of all prime factors of $m$ is the same as the set of all prime factors $n$, and $n \vert m$. Let $a$ be an arbitrary integer which is relatively prime to $m$ and $n$. Prove that:
\[ o_m(a) = o_n(a) \times \frac{m}{\gcd(m, a^{o_n(a)}-1)} \] where $o_k(a)$ denotes the smallest positive integer such that $a^{o_k(a)} \equiv 1$ (mod $k$) holds for some natural number $k > 1$.
2017 Korea National Olympiad, problem 5
Given a prime $p$, show that there exist two integers $a, b$ which satisfies the following.
For all integers $m$, $m^3+ 2017am+b$ is not a multiple of $p$.
2006 France Team Selection Test, 3
Let $a$, $b$ be positive integers such that $b^n+n$ is a multiple of $a^n+n$ for all positive integers $n$. Prove that $a=b$.
[i]Proposed by Mohsen Jamali, Iran[/i]
2021 Science ON Seniors, 1
Find all sequences of positive integers $(a_n)_{n\ge 1}$ which satisfy
$$a_{n+2}(a_{n+1}-1)=a_n(a_{n+1}+1)$$
for all $n\in \mathbb{Z}_{\ge 1}$.
[i](Bogdan Blaga)[/i]
1994 IMO Shortlist, 6
Define the sequence $ a_1, a_2, a_3, ...$ as follows. $ a_1$ and $ a_2$ are coprime positive integers and $ a_{n \plus{} 2} \equal{} a_{n \plus{} 1}a_n \plus{} 1$. Show that for every $ m > 1$ there is an $ n > m$ such that $ a_m^m$ divides $ a_n^n$. Is it true that $ a_1$ must divide $ a_n^n$ for some $ n > 1$?
2018 India Regional Mathematical Olympiad, 5
Find all natural numbers $n$ such that $1+[\sqrt{2n}]~$ divides $2n$.
( For any real number $x$ , $[x]$ denotes the largest integer not exceeding $x$. )
2014 Ukraine Team Selection Test, 12
Prove that for an arbitrary prime $p \ge 3$ the number of positive integers $n$, for which $p | n! +1$ does not exceed $cp^{2/3}$, where c is a constant that does not depend on $p$.
1984 IMO Longlists, 40
Find one pair of positive integers $a,b$ such that $ab(a+b)$ is not divisible by $7$, but $(a+b)^7-a^7-b^7$ is divisible by $7^7$.
2020 Switzerland - Final Round, 1
Let $\mathbb N$ be the set of positive integers. Find all functions $f\colon\mathbb N\to \mathbb N$ such that for every $m,n\in \mathbb N$, \[
f(m)+f(n)\mid m+n.
\]
2017 Bosnia and Herzegovina Team Selection Test, Problem 2
Denote by $\mathbb{N}$ the set of all positive integers. Find all functions $f:\mathbb{N}\rightarrow \mathbb{N}$ such that for all positive integers $m$ and $n$, the integer $f(m)+f(n)-mn$ is nonzero and divides $mf(m)+nf(n)$.
[i]Proposed by Dorlir Ahmeti, Albania[/i]
2016 Turkey Team Selection Test, 5
Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that for all $m,n \in \mathbb{N}$ holds $f(mn)=f(m)f(n)$ and $m+n \mid f(m)+f(n)$ .
2016 Greece Team Selection Test, 1
Given is the sequence $(a_n)_{n\geq 0}$ which is defined as follows:$a_0=3$ and $a_{n+1}-a_n=n(a_n-1) \ , \ \forall n\geq 0$.
Determine all positive integers $m$ such that $\gcd (m,a_n)=1 \ , \ \forall n\geq 0$.
1987 IMO Longlists, 34
(a) Let $\gcd(m, k) = 1$. Prove that there exist integers $a_1, a_2, . . . , a_m$ and $b_1, b_2, . . . , b_k$ such that each product $a_ib_j$ ($i = 1, 2, \cdots ,m; \ j = 1, 2, \cdots, k$) gives a different residue when divided by $mk.$
(b) Let $\gcd(m, k) > 1$. Prove that for any integers $a_1, a_2, . . . , a_m$ and $b_1, b_2, . . . , b_k$ there must be two products $a_ib_j$ and $a_sb_t$ ($(i, j) \neq (s, t)$) that give the same residue when divided by $mk.$
[i]Proposed by Hungary.[/i]
2012 Belarus Team Selection Test, 1
For any integer $d > 0,$ let $f(d)$ be the smallest possible integer that has exactly $d$ positive divisors (so for example we have $f(1)=1, f(5)=16,$ and $f(6)=12$). Prove that for every integer $k \geq 0$ the number $f\left(2^k\right)$ divides $f\left(2^{k+1}\right).$
[i]Proposed by Suhaimi Ramly, Malaysia[/i]
2019 China Team Selection Test, 4
Call a sequence of positive integers $\{a_n\}$ good if for any distinct positive integers $m,n$, one has
$$\gcd(m,n) \mid a_m^2 + a_n^2 \text{ and } \gcd(a_m,a_n) \mid m^2 + n^2.$$
Call a positive integer $a$ to be $k$-good if there exists a good sequence such that $a_k = a$. Does there exists a $k$ such that there are exactly $2019$ $k$-good positive integers?
1969 IMO Longlists, 19
$(FRA 2)$ Let $n$ be an integer that is not divisible by any square greater than $1.$ Denote by $x_m$ the last digit of the number $x^m$ in the number system with base $n.$ For which integers $x$ is it possible for $x_m$ to be $0$? Prove that the sequence $x_m$ is periodic with period $t$ independent of $x.$ For which $x$ do we have $x_t = 1$. Prove that if $m$ and $x$ are relatively prime, then $0_m, 1_m, . . . , (n-1)_m$ are different numbers. Find the minimal period $t$ in terms of $n$. If n does not meet the given condition, prove that it is possible to have $x_m = 0 \neq x_1$ and that the sequence is periodic starting only from some number $k > 1.$
2022 Lusophon Mathematical Olympiad, 3
The positive integers $x$ and $y$ are such that $x^{2022}+x+y^2$ is divisible by $xy$.
a) Give an example of such integers $x$ and $y$, with $x>y$.
b) Prove that $x$ is a perfect square.
2021 IMO Shortlist, N1
Find all positive integers $n\geq1$ such that there exists a pair $(a,b)$ of positive integers, such that $a^2+b+3$ is not divisible by the cube of any prime, and $$n=\frac{ab+3b+8}{a^2+b+3}.$$
2016 Saudi Arabia BMO TST, 1
Let $ a > b > c > d $ be positive integers such that
\begin{align*}
a^2 + ac - c^2 = b^2 + bd - d^2
\end{align*}
Prove that $ ab + cd $ is a composite number.
2016 Indonesia MO, 5
Given positive integers $a,b,c,d$ such that $a\mid c^d$ and $b\mid d^c$. Prove that
\[
ab\mid (cd)^{max(a,b)}
\]
2021 Science ON all problems, 1
Find all sequences of positive integers $(a_n)_{n\ge 1}$ which satisfy
$$a_{n+2}(a_{n+1}-1)=a_n(a_{n+1}+1)$$
for all $n\in \mathbb{Z}_{\ge 1}$.
[i](Bogdan Blaga)[/i]
2010 Brazil Team Selection Test, 2
Let $f$ be a non-constant function from the set of positive integers into the set of positive integer, such that $a-b$ divides $f(a)-f(b)$ for all distinct positive integers $a$, $b$. Prove that there exist infinitely many primes $p$ such that $p$ divides $f(c)$ for some positive integer $c$.
[i]Proposed by Juhan Aru, Estonia[/i]