This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 545

2008 IMO Shortlist, 2

Let $n \in \mathbb N$ and $A_n$ set of all permutations $(a_1, \ldots, a_n)$ of the set $\{1, 2, \ldots , n\}$ for which \[k|2(a_1 + \cdots+ a_k), \text{ for all } 1 \leq k \leq n.\] Find the number of elements of the set $A_n$. [i]Proposed by Vidan Govedarica, Serbia[/i]

2015 Junior Balkan Team Selection Tests - Romania, 1

Find all the positive integers $N$ with an even number of digits with the property that if we multiply the two numbers formed by cutting the number in the middle we get a number that is a divisor of $N$ ( for example $12$ works because $1 \cdot 2$ divides $12$)

2017 Thailand TSTST, 2

$\text{(i)}$ Does there exist a positive integer $m > 2016^{2016}$ such that $\frac{2016^m-m^{2016}}{m+2016}$ is a positive integer? $\text{(ii)}$ Does there exist a positive integer $m > 2017^{2017}$ such that $\frac{2017^m-m^{2017}}{m+2017}$ is a positive integer? [i](Serbia MO 2016 P1)[/i]

2012 Brazil Team Selection Test, 1

For any integer $d > 0,$ let $f(d)$ be the smallest possible integer that has exactly $d$ positive divisors (so for example we have $f(1)=1, f(5)=16,$ and $f(6)=12$). Prove that for every integer $k \geq 0$ the number $f\left(2^k\right)$ divides $f\left(2^{k+1}\right).$ [i]Proposed by Suhaimi Ramly, Malaysia[/i]

1967 IMO Shortlist, 1

Let $k,m,n$ be natural numbers such that $m+k+1$ is a prime greater than $n+1$. Let $c_s=s(s+1)$. Prove that \[(c_{m+1}-c_k)(c_{m+2}-c_k)\ldots(c_{m+n}-c_k)\] is divisible by the product $c_1c_2\ldots c_n$.

2024 Germany Team Selection Test, 2

Show that there exists a real constant $C>1$ with the following property: For any positive integer $n$, there are at least $C^n$ positive integers with exactly $n$ decimal digits, which are divisible by the product of their digits. (In particular, these $n$ digits are all non-zero.) [i]Proposed by Jean-Marie De Koninck and Florian Luca[/i]

2016 Saudi Arabia IMO TST, 2

Tags: divisibility
Let $a$ be a positive integer. Find all prime numbers $ p $ with the following property: there exist exactly $ p $ ordered pairs of integers $ (x, y)$, with $ 0 \leq  x, y \leq p - 1 $, such that $ p $ divides $ y^2 - x^3 - a^2x $.

2022 European Mathematical Cup, 2

We say that a positive integer $n$ is lovely if there exist a positive integer $k$ and (not necessarily distinct) positive integers $d_1$, $d_2$, $\ldots$, $d_k$ such that $n = d_1d_2\cdots d_k$ and $d_i^2 \mid n + d_i$ for $i=1,2,\ldots,k$. a) Are there infinitely many lovely numbers? b) Is there a lovely number, greater than $1$, which is a perfect square of an integer?

2011 IMO Shortlist, 6

Let $P(x)$ and $Q(x)$ be two polynomials with integer coefficients, such that no nonconstant polynomial with rational coefficients divides both $P(x)$ and $Q(x).$ Suppose that for every positive integer $n$ the integers $P(n)$ and $Q(n)$ are positive, and $2^{Q(n)}-1$ divides $3^{P(n)}-1.$ Prove that $Q(x)$ is a constant polynomial. [i]Proposed by Oleksiy Klurman, Ukraine[/i]

2016 Bosnia And Herzegovina - Regional Olympiad, 2

Let $a$ and $b$ be two positive integers such that $2ab$ divides $a^2+b^2-a$. Prove that $a$ is perfect square

2020 IMO Shortlist, N1

Given a positive integer $k$ show that there exists a prime $p$ such that one can choose distinct integers $a_1,a_2\cdots, a_{k+3} \in \{1, 2, \cdots ,p-1\}$ such that p divides $a_ia_{i+1}a_{i+2}a_{i+3}-i$ for all $i= 1, 2, \cdots, k$. [i]South Africa [/i]

2009 IMO Shortlist, 3

Let $f$ be a non-constant function from the set of positive integers into the set of positive integer, such that $a-b$ divides $f(a)-f(b)$ for all distinct positive integers $a$, $b$. Prove that there exist infinitely many primes $p$ such that $p$ divides $f(c)$ for some positive integer $c$. [i]Proposed by Juhan Aru, Estonia[/i]

2022 CIIM, 4

Given a positive integer $n$, determine how many permutations $\sigma$ of the set $\{1, 2, \ldots , 2022n\}$ have the following property: for each $i \in \{1, 2, \ldots , 2021n + 1\}$, the number $$\sigma(i) + \sigma(i + 1) + \cdots + \sigma(i + n - 1)$$ is a multiple of $n$.

2009 IMO Shortlist, 6

Let $k$ be a positive integer. Show that if there exists a sequence $a_0,a_1,\ldots$ of integers satisfying the condition \[a_n=\frac{a_{n-1}+n^k}{n}\text{ for all } n\geq 1,\] then $k-2$ is divisible by $3$. [i]Proposed by Okan Tekman, Turkey[/i]

KoMaL A Problems 2020/2021, A. 787

Let $p_n$ denote the $n^{\text{th}}$ prime number and define $a_n=\lfloor p_n\nu\rfloor$ for all positive integers $n$ where $\nu$ is a positive irrational number. Is it possible that there exist only finitely many $k$ such that $\binom{2a_k}{a_k}$ is divisible by $p_i^{10}$ for all $i=1,2,\ldots,2020?$ [i]Proposed by Superguy and ayan.nmath[/i]

2013 IFYM, Sozopol, 1

Let $u_1=1,u_2=2,u_3=24,$ and $u_{n+1}=\frac{6u_n^2 u_{n-2}-8u_nu_{n-1}^2}{u_{n-1}u_{n-2}}, n \geq 3.$ Prove that the elements of the sequence are natural numbers and that $n\mid u_n$ for all $n$.

2016 Iran Team Selection Test, 1

Let $m$ and $n$ be positive integers such that $m>n$. Define $x_k=\frac{m+k}{n+k}$ for $k=1,2,\ldots,n+1$. Prove that if all the numbers $x_1,x_2,\ldots,x_{n+1}$ are integers, then $x_1x_2\ldots x_{n+1}-1$ is divisible by an odd prime.

2020 Tournament Of Towns, 1

$2020$ positive integers are written in one line. Each of them starting with the third is divisible by previous and by the sum of two previous numbers. What is the smallest value the last number can take? A. Gribalko

IMSC 2024, 6

Let $a\equiv 1\pmod{4}$ be a positive integer. Show that any polynomial $Q\in\mathbb{Z}[X]$ with all positive coefficients such that $$Q(n+1)((a+1)^{Q(n)}-a^{Q(n)})$$ is a perfect square for any $n\in\mathbb{N}^{\ast}$ must be a constant polynomial. [i]Proposed by Vlad Matei, Romania[/i]

2014 Bosnia And Herzegovina - Regional Olympiad, 4

How namy subsets with $3$ elements of set $S=\{1,2,3,...,19,20\}$ exist, such that their product is divisible by $4$.

2019 Czech and Slovak Olympiad III A, 3

Let $a,b,c,n$ be positive integers such that the following conditions hold (i) numbers $a,b,c,a+b+c$ are pairwise coprime, (ii) number $(a+b)(b+c)(c+a)(a+b+c)(ab+bc+ca)$ is a perfect $n$-th power. Prove, that the product $abc$ can be expressed as a difference of two perfect $n$-th powers.

2025 Bulgarian Spring Mathematical Competition, 9.4

Determine all functions $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ such that $f(a) + 2ab + 2f(b)$ divides $f(a)^2 + 4f(b)^2$ for any positive integers $a$ and $b$.

2018 Regional Olympiad of Mexico Southeast, 2

Let $n=\frac{2^{2018}-1}{3}$. Prove that $n$ divides $2^n-2$.

2019 IFYM, Sozopol, 8

Find all polynomials $f\in Z[X],$ such that for each odd prime $p$ $$f(p)|(p-3)!+\frac{p+1}{2}.$$

2016 Taiwan TST Round 2, 2

Let $m$ and $n$ be positive integers such that $m>n$. Define $x_k=\frac{m+k}{n+k}$ for $k=1,2,\ldots,n+1$. Prove that if all the numbers $x_1,x_2,\ldots,x_{n+1}$ are integers, then $x_1x_2\ldots x_{n+1}-1$ is divisible by an odd prime.