This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 310

2023 IMO, 1

Determine all composite integers $n>1$ that satisfy the following property: if $d_1$, $d_2$, $\ldots$, $d_k$ are all the positive divisors of $n$ with $1 = d_1 < d_2 < \cdots < d_k = n$, then $d_i$ divides $d_{i+1} + d_{i+2}$ for every $1 \leq i \leq k - 2$.

1974 Bundeswettbewerb Mathematik, 4

Peter and Paul gamble as follows. For each natural number, successively, they determine its largest odd divisor and compute its remainder when divided by $4$. If this remainder is $1$, then Peter gives Paul a coin; otherwise, Paul gives Peter a coin. After some time they stop playing and balance the accounts. Prove that Paul wins.

2017 Bosnia and Herzegovina EGMO TST, 3

For positive integer $n$ we define $f(n)$ as sum of all of its positive integer divisors (including $1$ and $n$). Find all positive integers $c$ such that there exists strictly increasing infinite sequence of positive integers $n_1, n_2,n_3,...$ such that for all $i \in \mathbb{N}$ holds $f(n_i)-n_i=c$

2013 Dutch Mathematical Olympiad, 4

For a positive integer n the number $P(n)$ is the product of the positive divisors of $n$. For example, $P(20) = 8000$, as the positive divisors of $20$ are $1, 2, 4, 5, 10$ and $20$, whose product is $1 \cdot 2 \cdot 4 \cdot 5 \cdot 10 \cdot 20 = 8000$. (a) Find all positive integers $n$ satisfying $P(n) = 15n$. (b) Show that there exists no positive integer $n$ such that $P(n) = 15n^2$.

2017 International Zhautykov Olympiad, 2

For each positive integer $k$ denote $C(k)$ to be sum of its distinct prime divisors. For example $C(1)=0,C(2)=2,C(45)=8$. Find all positive integers $n$ for which $C(2^n+1)=C(n)$.

2015 Dutch BxMO/EGMO TST, 1

Let $m$ and $n$ be positive integers such that $5m+ n$ is a divisor of $5n +m$. Prove that $m$ is a divisor of $n$.

2009 Switzerland - Final Round, 10

Let $n > 3$ be a natural number. Prove that $4^n + 1$ has a prime divisor $> 20$.

2024 Kyiv City MO Round 1, Problem 5

Find the smallest positive integer $n$ that has at least $7$ positive divisors $1 = d_1 < d_2 < \ldots < d_k = n$, $k \geq 7$, and for which the following equalities hold: $$d_7 = 2d_5 + 1\text{ and }d_7 = 3d_4 - 1$$ [i]Proposed by Mykyta Kharin[/i]

2018 Poland - Second Round, 2

Let $n$ be a positive integer, which gives remainder $4$ of dividing by $8$. Numbers $1 = k_1 < k_2 < ... < k_m = n$ are all positive diivisors of $n$. Show that if $i \in \{ 1, 2, ..., m - 1 \}$ isn't divisible by $3$, then $k_{i + 1} \le 2k_{i}$.

2019 Saint Petersburg Mathematical Olympiad, 4

Olya wrote fractions of the form $1 / n$ on cards, where $n$ is all possible divisors the numbers $6^{100}$ (including the unit and the number itself). These cards she laid out in some order. After that, she wrote down the number on the first card, then the sum of the numbers on the first and second cards, then the sum of the numbers on the first three cards, etc., finally, the sum of the numbers on all the cards. Every amount Olya recorded on the board in the form of irreducible fraction. What is the least different denominators could be on the numbers on the board?

2015 Dutch IMO TST, 5

For a positive integer $n$, we de ne $D_n$ as the largest integer that is a divisor of $a^n + (a + 1)^n + (a + 2)^n$ for all positive integers $a$. 1. Show that for all positive integers $n$, the number $D_n$ is of the form $3^k$ with $k \ge 0$ an integer. 2. Show that for all integers $k \ge 0$ there exists a positive integer n such that $D_n = 3^k$.

2016 Dutch BxMO TST, 1

For a positive integer $n$ that is not a power of two, we de fine $t(n)$ as the greatest odd divisor of $n$ and $r(n)$ as the smallest positive odd divisor of $n$ unequal to $1$. Determine all positive integers $n$ that are not a power of two and for which we have $n = 3t(n) + 5r(n)$.

2019 China Team Selection Test, 2

Let $S$ be a set of positive integers, such that $n \in S$ if and only if $$\sum_{d|n,d<n,d \in S} d \le n$$ Find all positive integers $n=2^k \cdot p$ where $k$ is a non-negative integer and $p$ is an odd prime, such that $$\sum_{d|n,d<n,d \in S} d = n$$

2005 Germany Team Selection Test, 1

Let $\tau(n)$ denote the number of positive divisors of the positive integer $n$. Prove that there exist infinitely many positive integers $a$ such that the equation $ \tau(an)=n $ does not have a positive integer solution $n$.

2024 VJIMC, 4

Let $(b_n)_{n \ge 0}$ be a sequence of positive integers satisfying $b_n=d\left(\sum_{i=0}^{n-1} b_k\right)$ for all $n \ge 1$. (By $d(m)$ we denote the number of positive divisors of $m$.) a) Prove that $(b_n)_{n \ge 0}$ is unbounded. b) Prove that there are infinitely many $n$ such that $b_n>b_{n+1}$.

2016 Dutch IMO TST, 2

Determine all pairs $(a, b)$ of integers having the following property: there is an integer $d \ge 2$ such that $a^n + b^n + 1$ is divisible by $d$ for all positive integers $n$.

2019 Philippine TST, 4

Determine all pairs $(n, k)$ of distinct positive integers such that there exists a positive integer $s$ for which the number of divisors of $sn$ and of $sk$ are equal.

2020 Dürer Math Competition (First Round), P3

a) Is it possible that the sum of all the positive divisors of two different natural numbers are equal? b) Show that if the product of all the positive divisors of two natural numbers are equal, then the two numbers must be equal.

2020 Durer Math Competition Finals, 5

On a piece of paper, we write down all positive integers $n$ such that all proper divisors of $n$ are less than $30$. We know that the sum of all numbers on the paper having exactly one proper divisor is $2397$. What is the sum of all numbers on the paper having exactly two proper divisors? We say that $k$ is a proper divisor of the positive integer $n$ if $k | n$ and $1 < k < n$.

2022 Bundeswettbewerb Mathematik, 4

For each positive integer $k$ let $a_k$ be the largest divisor of $k$ which is not divisible by $3$. Let $s_n=a_1+a_2+\dots+a_n$. Show that: (a) The number $s_n$ is divisible by $3$ iff the number of ones in the ternary expansion of $n$ is divisible by $3$. (b) There are infinitely many $n$ for which $s_n$ is divisible by $3^3$.

2016 Dutch BxMO TST, 1

For a positive integer $n$ that is not a power of two, we de fine $t(n)$ as the greatest odd divisor of $n$ and $r(n)$ as the smallest positive odd divisor of $n$ unequal to $1$. Determine all positive integers $n$ that are not a power of two and for which we have $n = 3t(n) + 5r(n)$.

2006 Portugal MO, 5

Determine all the natural numbers $n$ such that exactly one fifth of the natural numbers $1,2,...,n$ are divisors of $n$.

2020 German National Olympiad, 4

Determine all positive integers $n$ for which there exists a positive integer $d$ with the property that $n$ is divisible by $d$ and $n^2+d^2$ is divisible by $d^2n+1$.

1996 All-Russian Olympiad Regional Round, 9.5

Find all natural numbers that have exactly six divisors whose sum is $3500$.

2013 Portugal MO, 4

Which is the leastest natural number $n$ such that $n!$ has, at least, $2013$ divisors?