This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 310

2014 Rioplatense Mathematical Olympiad, Level 3, 2

El Chapulín observed that the number $2014$ has an unusual property. By placing its eight positive divisors in increasing order, the fifth divisor is equal to three times the third minus $4$. A number of eight divisors with this unusual property is called the [i]red[/i] number . How many [i]red[/i] numbers smaller than $2014$ exist?

2020 Switzerland Team Selection Test, 4

Find all odd positive integers $ n > 1$ such that if $ a$ and $ b$ are relatively prime divisors of $ n$, then $ a\plus{}b\minus{}1$ divides $ n$.

2022 Mexico National Olympiad, 3

Tags: music , divisor
Let $n>1$ be an integer and $d_1<d_2<\dots<d_m$ the list of its positive divisors, including $1$ and $n$. The $m$ instruments of a mathematical orchestra will play a musical piece for $m$ seconds, where the instrument $i$ will play a note of tone $d_i$ during $s_i$ seconds (not necessarily consecutive), where $d_i$ and $s_i$ are positive integers. This piece has "sonority" $S=s_1+s_2+\dots s_n$. A pair of tones $a$ and $b$ are harmonic if $\frac ab$ or $\frac ba$ is an integer. If every instrument plays for at least one second and every pair of notes that sound at the same time are harmonic, show that the maximum sonority achievable is a composite number.

2016 India Regional Mathematical Olympiad, 3

$a, b, c, d$ are integers such that $ad + bc$ divides each of $a, b, c$ and $d$. Prove that $ad + bc =\pm 1$

2006 Junior Balkan Team Selection Tests - Romania, 3

For any positive integer $n$ let $s(n)$ be the sum of its digits in decimal representation. Find all numbers $n$ for which $s(n)$ is the largest proper divisor of $n$.

2003 BAMO, 4

An integer $n > 1$ has the following property: for every (positive) divisor $d$ of $n, d + 1$ is a divisor of $n + 1$. Prove that $n$ is prime.

2002 IMO Shortlist, 3

Let $p_1,p_2,\ldots,p_n$ be distinct primes greater than $3$. Show that $2^{p_1p_2\cdots p_n}+1$ has at least $4^n$ divisors.

2000 IMO Shortlist, 2

For a positive integer $n$, let $d(n)$ be the number of all positive divisors of $n$. Find all positive integers $n$ such that $d(n)^3=4n$.

1993 Tournament Of Towns, (381) 3

A natural number $A$ is given. One may add to it one of its divisors $d$ ($1 < d < A$). One may then repeat this operation with the new number $A + d$ and so on. Prove that starting from $A = 4$ one can get any composite number by these operations. (M Vyalyi)

1983 IMO Shortlist, 2

Let $n$ be a positive integer. Let $\sigma(n)$ be the sum of the natural divisors $d$ of $n$ (including $1$ and $n$). We say that an integer $m \geq 1$ is [i]superabundant[/i] (P.Erdos, $1944$) if $\forall k \in \{1, 2, \dots , m - 1 \}$, $\frac{\sigma(m)}{m} >\frac{\sigma(k)}{k}.$ Prove that there exists an infinity of [i]superabundant[/i] numbers.

2002 IMO Shortlist, 2

Let $n\geq2$ be a positive integer, with divisors $1=d_1<d_2<\,\ldots<d_k=n$. Prove that $d_1d_2+d_2d_3+\,\ldots\,+d_{k-1}d_k$ is always less than $n^2$, and determine when it is a divisor of $n^2$.

2012 Kyiv Mathematical Festival, 4

Find all positive integers $a, b,c$ greater than $1$, such that $ab + 1$ is divisible by $c, bc + 1$ is divisible by $a$ and $ca + 1$ is divisible by $b$.

1995 May Olympiad, 1

Veronica, Ana and Gabriela are forming a round and have fun with the following game. One of them chooses a number and says out loud, the one to its left divides it by its largest prime divisor and says the result out loud and so on. The one who says the number out loud $1$ wins , at which point the game ends. Ana chose a number greater than $50$ and less than $100$ and won. Veronica chose the number following the one chosen by Ana and also won. Determine all the numbers that could have been chosen by Ana.

1982 Tournament Of Towns, (015) 1

Find all natural numbers which are divisible by $30$ and which have exactly $30$ different divisors. (M Levin)

1998 Belarus Team Selection Test, 3

Let $1=d_1<d_2<d_3<...<d_k=n$ be all different divisors of positive integer $n$ written in ascending order. Determine all $n$ such that $$d_7^2+d_{10}^2=(n/d_{22})^2.$$

2024 Baltic Way, 18

An infinite sequence $a_1, a_2,\ldots$ of positive integers is such that $a_n \geq 2$ and $a_{n+2}$ divides $a_{n+1} + a_n$ for all $n \geq 1$. Prove that there exists a prime which divides infinitely many terms of the sequence.

2017 QEDMO 15th, 10

Let $p> 3$ be a prime number and let $q = \frac{4^p-1}{3}$. Show that $q$ is a composite integer as well is a divisor of $2^{q-1}- 1$.

2015 Balkan MO Shortlist, N3

Let $a$ be a positive integer. For all positive integer n, we define $ a_n=1+a+a^2+\ldots+a^{n-1}. $ Let $s,t$ be two different positive integers with the following property: If $p$ is prime divisor of $s-t$, then $p$ divides $a-1$. Prove that number $\frac{a_{s}-a_{t}}{s-t}$ is an integer. (FYROM)

1989 Mexico National Olympiad, 2

Find two positive integers $a,b$ such that $a | b^2, b^2 | a^3, a^3 | b^4, b^4 | a^5$, but $a^5$ does not divide $b^6$

2001 Estonia National Olympiad, 4

We call a triple of positive integers $(a, b, c)$ [i]harmonic [/i] if $\frac{1}{a}=\frac{1}{b}+\frac{1}{c}$. Prove that, for any given positive integer $c$, the number of harmonic triples $(a, b, c)$ is equal to the number of positive divisors of $c^2$.

2017 Germany, Landesrunde - Grade 11/12, 4

Find the smallest positive integer $n$ that is divisible by $100$ and has exactly $100$ divisors.

2015 Middle European Mathematical Olympiad, 8

Let $n\ge 2$ be an integer. Determine the number of positive integers $m$ such that $m\le n$ and $m^2+1$ is divisible by $n$.

2020 AIME Problems, 4

Tags: divisor
Let $S$ be the set of positive integers $N$ with the property that the last four digits of $N$ are $2020$, and when the last four digits are removed, the result is a divisor of $N$. For example, $42,020$ is in $S$ because $4$ is a divisor of $42,020$. Find the sum of all the digits of all the numbers in $S$. For example, the number $42,020$ contributes $4+2+0+2+0=8$ to this total.

2003 France Team Selection Test, 3

Let $p_1,p_2,\ldots,p_n$ be distinct primes greater than $3$. Show that $2^{p_1p_2\cdots p_n}+1$ has at least $4^n$ divisors.

2025 Euler Olympiad, Round 2, 1

Let a pair of positive integers $(n, m)$ that are relatively prime be called [i]intertwined[/i] if among any two divisors of $n$ greater than $1$, there exists a divisor of $m$ and among any two divisors of $m$ greater than $1$, there exists a divisor of $n$. For example, pair $(63, 64)$ is intertwined. [b]a)[/b] Find the largest integer $k$ for which there exists an intertwined pair $(n, m)$ such that the product $nm$ is equal to the product of the first $k$ prime numbers. [b]b)[/b] Prove that there does [b]not[/b] exist an intertwined pair $(n, m)$ such that the product $nm$ is the product of $2025$ distinct prime numbers. [b]c)[/b] Prove that there exists an intertwined pair $(n, m)$ such that the number of divisors of $n$ is greater than $2025$. [i]Proposed by Stijn Cambie, Belgium[/i]