This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 545

2007 Germany Team Selection Test, 3

For all positive integers $n$, show that there exists a positive integer $m$ such that $n$ divides $2^{m} + m$. [i]Proposed by Juhan Aru, Estonia[/i]

2017 Ukraine Team Selection Test, 2

Denote by $\mathbb{N}$ the set of all positive integers. Find all functions $f:\mathbb{N}\rightarrow \mathbb{N}$ such that for all positive integers $m$ and $n$, the integer $f(m)+f(n)-mn$ is nonzero and divides $mf(m)+nf(n)$. [i]Proposed by Dorlir Ahmeti, Albania[/i]

1994 IMO Shortlist, 7

A wobbly number is a positive integer whose digits are alternately zero and non-zero with the last digit non-zero (for example, 201). Find all positive integers which do not divide any wobbly number.

2008 Greece Team Selection Test, 1

Find all possible values of $a\in \mathbb{R}$ and $n\in \mathbb{N^*}$ such that $f(x)=(x-1)^n+(x-2)^{2n+1}+(1-x^2)^{2n+1}+a$ is divisible by $\phi (x)=x^2-x+1$

2021 SAFEST Olympiad, 2

Given a positive integer $k$ show that there exists a prime $p$ such that one can choose distinct integers $a_1,a_2\cdots, a_{k+3} \in \{1, 2, \cdots ,p-1\}$ such that p divides $a_ia_{i+1}a_{i+2}a_{i+3}-i$ for all $i= 1, 2, \cdots, k$. [i]South Africa [/i]

2016 Belarus Team Selection Test, 3

Let $m$ and $n$ be positive integers such that $m>n$. Define $x_k=\frac{m+k}{n+k}$ for $k=1,2,\ldots,n+1$. Prove that if all the numbers $x_1,x_2,\ldots,x_{n+1}$ are integers, then $x_1x_2\ldots x_{n+1}-1$ is divisible by an odd prime.

2019 Tournament Of Towns, 2

Consider two positive integers $a$ and $b$ such that $a^{n+1} + b^{n+1}$ is divisible by $a^n + b^n$ for infi nitely many positive integers $n$. Is it necessarily true that $a = b$? (Boris Frenkin)

2022 Thailand TSTST, 2

Find all positive integers $n\geq1$ such that there exists a pair $(a,b)$ of positive integers, such that $a^2+b+3$ is not divisible by the cube of any prime, and $$n=\frac{ab+3b+8}{a^2+b+3}.$$

2015 Bosnia And Herzegovina - Regional Olympiad, 1

Find all positive integers $a$ and $b$ such that $ ab+1 \mid a^2-1$

2014 Irish Math Olympiad, 2

Prove that for $N>1$ that $(N^{2})^{2014} - (N^{11})^{106}$ is divisible by $N^6 + N^3 +1$ Is this just a proof by induction or is there a more elegant method? I don't think calculating $N = 2$ was expected.

2007 Nicolae Coculescu, 3

Determine all sets of natural numbers $ A $ that have at least two elements, and satisfying the following proposition: $$ \forall x,y\in A\quad x>y\implies \frac{x-y}{\text{gcd} (x,y)} \in A. $$ [i]Marius Perianu[/i]

1997 IMO Shortlist, 14

Let $ b, m, n$ be positive integers such that $ b > 1$ and $ m \neq n.$ Prove that if $ b^m \minus{} 1$ and $ b^n \minus{} 1$ have the same prime divisors, then $ b \plus{} 1$ is a power of 2.

1969 IMO Shortlist, 54

$(POL 3)$ Given a polynomial $f(x)$ with integer coefficients whose value is divisible by $3$ for three integers $k, k + 1,$ and $k + 2$. Prove that $f(m)$ is divisible by $3$ for all integers $m.$

2015 Turkey MO (2nd round), 1

$m$ and $n$ are positive integers. If the number \[ k=\dfrac{(m+n)^2}{4m(m-n)^2+4}\] is an integer, prove that $k$ is a perfect square.

2012 Brazil Team Selection Test, 3

Determine all the pairs $ (p , n )$ of a prime number $ p$ and a positive integer $ n$ for which $ \frac{ n^p + 1 }{p^n + 1} $ is an integer.

2021 South Africa National Olympiad, 1

Find the smallest and largest integers with decimal representation of the form $ababa$ ($a \neq 0$) that are divisible by $11$.

2010 Belarus Team Selection Test, 6.1

Let $f$ be a non-constant function from the set of positive integers into the set of positive integer, such that $a-b$ divides $f(a)-f(b)$ for all distinct positive integers $a$, $b$. Prove that there exist infinitely many primes $p$ such that $p$ divides $f(c)$ for some positive integer $c$. [i]Proposed by Juhan Aru, Estonia[/i]

2015 India PRMO, 19

$19.$ The digits of a positive integer $n$ are four consecutive integers in decreasing order when read from left to right. What is the sum of the possible remainders when $n$ is divided by $37 ?$

2022 Vietnam National Olympiad, 4

For every pair of positive integers $(n,m)$ with $n<m$, denote $s(n,m)$ be the number of positive integers such that the number is in the range $[n,m]$ and the number is coprime with $m$. Find all positive integers $m\ge 2$ such that $m$ satisfy these condition: i) $\frac{s(n,m)}{m-n} \ge \frac{s(1,m)}{m}$ for all $n=1,2,...,m-1$; ii) $2022^m+1$ is divisible by $m^2$

2022 Korea Winter Program Practice Test, 6

Determine all positive integers $(x_1,x_2,x_3,y_1,y_2,y_3)$ such that $y_1+ny_2^n+n^2y_3^{2n}$ divides $x_1+nx_2^n+n^2x_3^{2n}$ for all positive integer $n$.

2000 Tournament Of Towns, 4

Can one place positive integers at all vertices of a cube in such a way that for every pair of numbers connected by an edge, one will be divisible by the other , and there are no other pairs of numbers with this property? (A Shapovalov)

2002 Iran MO (2nd round), 1

Let $n \in \mathbb N$ and $A_n$ set of all permutations $(a_1, \ldots, a_n)$ of the set $\{1, 2, \ldots , n\}$ for which \[k|2(a_1 + \cdots+ a_k), \text{ for all } 1 \leq k \leq n.\] Find the number of elements of the set $A_n$. [i]Proposed by Vidan Govedarica, Serbia[/i]

2017 Bundeswettbewerb Mathematik, 1

The numbers $1,2,3,\dots,2017$ are on the blackboard. Amelie and Boris take turns removing one of those until only two numbers remain on the board. Amelie starts. If the sum of the last two numbers is divisible by $8$, then Amelie wins. Else Boris wins. Who can force a victory?

2000 Belarus Team Selection Test, 8.2

Prove that there exists two strictly increasing sequences $(a_{n})$ and $(b_{n})$ such that $a_{n}(a_{n}+1)$ divides $b^{2}_{n}+1$ for every natural n.