Found problems: 2
2004 Gheorghe Vranceanu, 2
Let be two real numbers $ a<b, $ a nonempty and non-maximal subset $ K $ of the interval $ (a,b) $ and three functions
$$ f:(a,b)\longrightarrow\mathbb{R}, g,h:\mathbb{R}\longrightarrow\mathbb{R} $$
satisfying the following relations.
$ \text{(i)} g $ and $ h $ are primitivable.
$ \text{(ii)} g-h $ hasn't any root in $ (a,b). $
$ \text{(iii)} $ The restrictions of $ f $ at $ K $ and $ (a,b)\setminus K $ are equal to $ g,h, $ respectively.
Prove that $ f $ is not primitivable.
2004 Gheorghe Vranceanu, 3
Let be a real number $ r $ and two functions $ f:[r,\infty )\longrightarrow\mathbb{R} , F_1:(r,\infty )\longrightarrow\mathbb{R} $ satisfying the following two properties.
$ \text{(i)} f $ has Darboux's intermediate value property.
$ \text{(ii)} F_1$ is differentiable and $ F'_1=f\bigg|_{(r,\infty )} $
[b]1)[/b] Provide an example of what $ f,F_1 $ could be if $ f $ hasn't a lateral limit at $ r, $ and $ F_1 $ has lateral limit at $ r. $
Moreover, if $ f $ has lateral limit at $ r, $ show that
[b]2)[/b] $ F_1 $ has a finite lateral limit at $ r. $
[b]3)[/b] the function $ F:[r,\infty )\longrightarrow\mathbb{R} $ defined as
$$ F(x)=\left\{ \begin{matrix} F_1(x) ,& \quad x\in (r,\infty ) \\ \lim_{\stackrel{x\to r}{x>r}} F_1(x), & \quad x=r \end{matrix} \right. $$
is a primitive of $ f. $