This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3

2024 Myanmar IMO Training, 5

A fighting game club has $2024$ members. One day, a game of Smash is played between some pairs of members so that every member has played against exactly $3$ other members. Each match has a winner and a loser. A member will be [i]happy[/i] if they won in at least $2$ of the matches. What is the maximum number of happy members over all possible match-ups and all possible outcomes?

2021 Lusophon Mathematical Olympiad, 2

Esmeralda has created a special knight to play on quadrilateral boards that are identical to chessboards. If a knight is in a square then it can move to another square by moving 1 square in one direction and 3 squares in a perpendicular direction (which is a diagonal of a $2\times4$ rectangle instead of $2\times3$ like in chess). In this movement, it doesn't land on the squares between the beginning square and the final square it lands on. A trip of the length $n$ of the knight is a sequence of $n$ squares $C1, C2, ..., Cn$ which are all distinct such that the knight starts at the $C1$ square and for each $i$ from $1$ to $n-1$ it can use the movement described before to go from the $Ci$ square to the $C(i+1)$. Determine the greatest $N \in \mathbb{N}$ such that there exists a path of the knight with length $N$ on a $5\times5$ board.

2016 Kyrgyzstan National Olympiad, 4

Aibek wrote 6 letters to 6 different person.[b][u]In how many ways[/u][/b] can he send the letters to them,such that no person gets his letter.