This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2017 Baltic Way, 1

Let $a_0,a_1,a_2,...$ be an infinite sequence of real numbers satisfying $\frac{a_{n-1}+a_{n+1}}{2}\geq a_n$ for all positive integers $n$. Show that $$\frac{a_0+a_{n+1}}{2}\geq \frac{a_1+a_2+...+a_n}{n}$$ holds for all positive integers $n$.