This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

ICMC 4, 5

Find all composite positive integers \(m\) such that, whenever the product of two positive integers \(a\) and \(b\) is \(m\), their sum is a power of $2$. [i]Proposed by Harun Khan[/i]

1980 Putnam, A2

Let $r$ and $s$ be positive integers. Derive a formula for the number of ordered quadruples $(a,b,c,d)$ of positive integers such that $$3^r \cdot 7^s = \text{lcm}(a,b,c)= \text{lcm}(a,b,d)=\text{lcm}(a,c,d)=\text{lcm}(b,c,d),$$ depending only on $r$ and $s.$