Found problems: 10
2019 Baltic Way, 9
For a positive integer $n$, consider all nonincreasing functions $f : \{1,\hdots,n\}\to\{1,\hdots,n\}$. Some of them have a fixed point (i.e. a $c$ such that $f(c) = c$), some do not. Determine the difference between the sizes of the two sets of functions.
[i]Remark.[/i] A function $f$ is [i]nonincreasing[/i] if $f(x) \geq f(y)$ holds for all $x \leq y$
2023 Thailand Online MO, 1
Let $n$ be a positive integer. Chef Kao has $n$ different flavors of ice cream. He wants to serve one small cup and one large cup for each flavor. He arranges the $2n$ ice cream cups into two rows of $n$ cups on a tray. He wants the tray to be colorful, so he arranges the ice cream cups with the following conditions:
[list]
[*]each row contains all ice cream flavors, and
[*]each column has different sizes of ice cream cup.
[/list]Determine the number of ways that Chef Kao can arrange cups of ice cream with the above conditions.
2019 India PRMO, 12
Let $N$ be the number of ways of choosing a subset of $5$ distinct numbers from the set
$${10a+b:1\leq a\leq 5, 1\leq b\leq 5}$$
where $a,b$ are integers, such that no two of the selected numbers have the same units digits and no two have the same tens digit. What is the remainder when $N$ is divided by $73$?
2020-21 IOQM India, 27
Q.A bug travels in the co-ordinate plane moving along only the lines that are parallel to the $X$ and $Y$ axes.Let $A=(-3, 2)$ and $B = (3, -2)$. Consider all possible paths of the bug from $A$ to $B$.How many lattice points lie on at least one of these paths.
My answer ($87$)
2015 India Regional MathematicaI Olympiad, 6
Let $S=\{1,2,\cdots, n\}$ and let $T$ be the set of all ordered triples of subsets of $S$, say $(A_1, A_2, A_3)$, such that $A_1\cup A_2\cup A_3=S$. Determine, in terms of $n$,
\[ \sum_{(A_1,A_2,A_3)\in T}|A_1\cap A_2\cap A_3|\]
2022 Germany Team Selection Test, 2
Given two positive integers $n$ and $m$ and a function $f : \mathbb{Z} \times \mathbb{Z} \to \left\{0,1\right\}$ with the property that
\begin{align*}
f\left(i, j\right) = f\left(i+n, j\right) = f\left(i, j+m\right) \qquad \text{for all } \left(i, j\right) \in \mathbb{Z} \times \mathbb{Z} .
\end{align*}
Let $\left[k\right] = \left\{1,2,\ldots,k\right\}$ for each positive integer $k$.
Let $a$ be the number of all $\left(i, j\right) \in \left[n\right] \times \left[m\right]$ satisfying
\begin{align*}
f\left(i, j\right) = f\left(i+1, j\right) = f\left(i, j+1\right) .
\end{align*}
Let $b$ be the number of all $\left(i, j\right) \in \left[n\right] \times \left[m\right]$ satisfying
\begin{align*}
f\left(i, j\right) = f\left(i-1, j\right) = f\left(i, j-1\right) .
\end{align*}
Prove that $a = b$.
2000 Saint Petersburg Mathematical Olympiad, 11.3
Every month a forester Ermolay has planted 2000 trees along a fence. On every tree, he has written how many oaks there are among itself and trees at his right and left. This way a sequence of 2000 numbers was created. How many distinct sequences could the forester Ermolay get? (oak is a certain type of tree)
[I]Proposed by A. Khrabrov, D.Rostovski[/i]
2022 Germany Team Selection Test, 2
Given two positive integers $n$ and $m$ and a function $f : \mathbb{Z} \times \mathbb{Z} \to \left\{0,1\right\}$ with the property that
\begin{align*}
f\left(i, j\right) = f\left(i+n, j\right) = f\left(i, j+m\right) \qquad \text{for all } \left(i, j\right) \in \mathbb{Z} \times \mathbb{Z} .
\end{align*}
Let $\left[k\right] = \left\{1,2,\ldots,k\right\}$ for each positive integer $k$.
Let $a$ be the number of all $\left(i, j\right) \in \left[n\right] \times \left[m\right]$ satisfying
\begin{align*}
f\left(i, j\right) = f\left(i+1, j\right) = f\left(i, j+1\right) .
\end{align*}
Let $b$ be the number of all $\left(i, j\right) \in \left[n\right] \times \left[m\right]$ satisfying
\begin{align*}
f\left(i, j\right) = f\left(i-1, j\right) = f\left(i, j-1\right) .
\end{align*}
Prove that $a = b$.
2022-23 IOQM India, 10
Consider the $10$-digit number $M=9876543210$. We obtain a new $10$-digit number from $M$ according to the following rule: we can choose one or more disjoint pairs of adjacent digits in $M$ and interchange the digits in these chosen pairs, keeping the remaining digits in their own places. For example, from $M=9\underline{87}6 \underline{54} 3210$ by interchanging the $2$ underlined pairs, and keeping the others in their places, we get $M_{1}=9786453210$. Note that any number of (disjoint) pairs can be interchanged. Find the number of new numbers that can be so obtained from $M$.
2020-21 IOQM India, 15
Three couples sit for a photograph in $2$ rows of three people each such that no couple is sitting in the same row next to each other or in the same column one behind the other. How many such arrangements are possible?