This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3

2021 Science ON all problems, 4

Take $k\in \mathbb{Z}_{\ge 1}$ and the sets $A_1,A_2,\dots, A_k$ consisting of $x_1,x_2,\dots ,x_k$ positive integers, respectively. For any two sets $A$ and $B$, define $A+B=\{a+b~|~a\in A,~b\in B\}$. Find the least and greatest number of elements the set $A_1+A_2+\dots +A_k$ may have. [i] (Andrei Bâra)[/i]

2021 Science ON grade VII, 4

Take $k\in \mathbb{Z}_{\ge 1}$ and the sets $A_1,A_2,\dots, A_k$ consisting of $x_1,x_2,\dots ,x_k$ positive integers, respectively. For any two sets $A$ and $B$, define $A+B=\{a+b~|~a\in A,~b\in B\}$. Find the least and greatest number of elements the set $A_1+A_2+\dots +A_k$ may have. [i] (Andrei Bâra)[/i]

2021 German National Olympiad, 5

a) Determine the largest real number $A$ with the following property: For all non-negative real numbers $x,y,z$, one has \[\frac{1+yz}{1+x^2}+\frac{1+zx}{1+y^2}+\frac{1+xy}{1+z^2} \ge A.\] b) For this real number $A$, find all triples $(x,y,z)$ of non-negative real numbers for which equality holds in the above inequality.