This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

1972 Spain Mathematical Olympiad, 8

We know that $R^3 = \{(x_1, x_2, x_3) | x_i \in R, i = 1, 2, 3\}$ is a vector space regarding the laws of composition $(x_1, x_2, x_3) + (y_1, y_2, y_3) = (x_1 + y_1, x_2 + y_2, x_3 + y_3)$, $\lambda (x_1, x_2, x_3) = (\lambda x_1, \lambda x_2, \lambda x_3)$, $\lambda \in R$. We consider the following subset of $R^3$ : $L =\{(x_1, x2, x_3) \in R^3 | x_1 + x_2 + x_3 = 0\}$. a) Prove that $L$ is a vector subspace of $R^3$ . b) In $R^3$ the following relation is defined $\overline{x} R \overline{y} \Leftrightarrow \overline{x} -\overline{y} \in L, \overline{x} , \overline{y} \in R^3$. Prove that it is an equivalence relation. c) Find two vectors of $R^3$ that belong to the same class as the vector $(-1, 3, 2)$.

2003 Gheorghe Vranceanu, 4

Find the number of functions $ f:\mathbb{N}\longrightarrow\mathbb{N} $ having the property that $ (f\circ f\circ f)(n)=n+3, $ for any natural numbers $ n. $